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Objectives

Assess when the spatial variation of temperature is
negligible, and temperature varies nearly uniformly with
time, making the simplified lumped system analysis
applicable

Obtain analytical solutions for transient one-dimensional
conduction problems in rectangular, cylindrical, and
spherical geometries using the method of separation of
variables, and understand why a one-term solution is
usually a reasonable approximation

Solve the transient conduction problem in large mediums
using the similarity variable, and predict the variation of
temperature with time and distance from the exposed
surface

Construct solutions for multi-dimensional transient
conduction problems using the product solution approach



LUMPED SYSTEM ANALYSIS

Interior temperature of some
bodies remains essentially
uniform at all times during a
heat transfer process.

The temperature of such
bodies can be taken to be a (a) Copper ball
function of time only, T(1).

Heat transfer analysis that
utilizes this idealization is
known as lumped system
analysis.

A small copper ball
can be modeled as a
lumped system, but
a roast beef cannot.

(b) Roast beef



(Heat transfer into the bm‘l}f> _

during dt

hA(T.. — T) dt = mc, dT

m=pV dT=dT—-T,)
d(T o Tm) hAS
= — dr
Tr—1T, p\Vc,
Integrating with
T=T at t=0
T=T(t at t=t
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The increase in the / s
energy of the body 4
during dt h
SOLID BODY T,
m = mass
/= volume
P = density

T, = initial temperature

’ T=T()

Q =hA|T,,— T(n]
The geometry and
parameters involved in the
lumped system analysis.

time
constant

(1/s)
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The temperature of a lumped system
approaches the environment
temperature as time gets larger.

This equation enables us to
determine the temperature
T(t) of a body at time t, or
alternatively, the time ¢
required for the temperature
to reach a specified value T(f).

The temperature of a body
approaches the ambient
temperature T_ exponentially.

The temperature of the body
changes rapidly at the
beginning, but rather slowly
later on. A large value of b
iIndicates that the body
approaches the environment
temperature in a short time



Q[’f'l = hA [T(f) — T, (W) The rate of convection heat
o : - transfer between the body
and its environment at time t

Q = mc,[T(1) — T|] (kJ) The total amount of heat transfer
N between the body and the surrounding
medium over the time interval t =0to ¢

Q. = ;”(*}”( T,—T) (kJ) The maximum heat transfer between
the body and its surroundings

=0 f—>
T,
T, T,
T, T,
Heat transfer to or froma {; ’ o Iy

body reaches its T.
maximum value when the
body reaches the
environment temperature. Q = Qax = mc,,
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(T;-T,)



Criteria for Lumped System Analysis

Convection V' Characteristic
\ , L.= A. length
h
‘ Conduction ‘ T, i E Biot number
1=
K
SOLID Lumped system analysis
P Bl % is applicable if
- % \ Bi = 0.1
When Bi < 0.1, the temperatures
) within the body relative to the
surroundings (i.e., T —T_) remain

Bi = Jieat convection within 5 percent of each other.
heat conduction

h AT Convection at the surface of the body
k/L. AT Conduction within the body

Bi

L./k Conduction resistance within the body
[/h  Convection resistance at the surface of the body

Bi =



Jean-Baptiste Biot (1774—1862) was a
French physicist, astronomer, and
mathematician born in Paris, France.
Although younger, Biot worked on the
analysis of heat conduction even earlier
than Fourier did (1802 or 1803) and
attempted, unsuccessfully, to deal with
the problem of incorporating external
convection effects in heat conduction
analysis. Fourier read Biot’s work and
by 1807 had determined for himself
how to solve the elusive problem. In
[804. Biot accompanied Gay Lussac
on the first balloon ascent undertaken
for scientific purposes. In 1820, with
Felix Savart, he discovered the law
known as “Biot and Savart’s Law.” He
was especially interested in questions
relating to the polarization of light, and
for his achievements in this field he was
awarded the Rumford Medal of the Royal
Society in 1840. The dimensionless
Biot number (Bi) used in transient heat
transfer calculations 1s named after him.



h=15W/m2.°C

T,=20°C

Spherical
copper
ball

k=401 W/m-°C

Small bodies with high
thermal conductivities
and low convection
coefficients are most
likely to satisfy the
criterion for lumped
system analysis.

85°C

110°C
130°C

1
k= % = LD“ = (]:D =0.02 m
R | ‘;IT- -
. hL,. 15x%0.02 e Convection
Bi=—=<= =(.00075 < 0.1
k 401

h = 2000 W/m2-°C
When the convection coefficient h is
high and k is low, large temperature
differences occur between the inner
and outer regions of a large solid.

Analogy between heat transfer
to a solid and passenger 9
traffic to an island.




TRANSIENT HEAT CONDUCTION IN LARGE PLANE
WALLS, LONG CYLINDERS, AND SPHERES WITH

SPATIAL EFFECTS

We will consider the variation of temperature
with time and position in one-dimensional

problems such as those associated with a large

plane wall, a long cylinder, and a sphere.

T. Initially T, T. Initially T,
h I=T noon o TEEE ),
0 '—HL |

X
OF—>

(a) A large plane wall (£) A long cylinder

T.

!

I,

AN o0
0 L x
Initially T.,
=T, L

I
Transient temperature profiles in a
plane wall exposed to convection
from its surfaces for T.>T .

I,

h

r

Schematic of the

o}

simple geometries in

which heat transfer is

one-dimensional.
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Nondimensionalized One-Dimensional Transient
Conduction Problem

e | a*T 14T
Differential equation: — = —-——
T Initially T o
h = h Boundary conditions:
a1(0, 1) dT(L, 1)
| : =0 and —k— = hlT(L, 1) — 1T.]
0pb————e——» ax ax
L x
| I[nitial condition: I(x,0)=T,
a =klpc, x = x/IL 6(x, 1) =[T(x, )y — TNT, — T,]
| 20  L*ob ab(1.1)  hL
‘?—;= —(— and Xk 6(1. 1)
(a) A large plane wall J a ol 0
. . - . . 7’0 a6
Dimensionless differential equation: 2— = ;—_
s i
_ . 3 90(0, 7) 90(1, 1) ‘
Dimensionless BC's: - =0 and - = —Bif(l, 1)
0 X o X

Dimensionless initial condition: H(X.0)=1 11



(X, 1) = Dimensionless temperature
Tx- - T!'
X : : : :
X = 7 Dimensionless distance from the center
. _hL o | . .
Bi = T Dimensionless heat transfer coefficient (Biot number)
ol : i . .
T = 2 = Fo Dimensionless time (Fourier number)

(a) Original heat conduction problem:
PT_ 10T
ax2  a at’

aT(0, ¢ dT(L. t

(0, 1) — 0. —k (L. 1)
dx ]
T=Fx,LtkaohT)

T(x,0) = T,

= h[T(L, t) — T.]

(b) Nondimensionalized problem: Nondimensionalization
e _reduces the number of_
2 o B, 0)=1 independent variables in one-
56(0. 7) 86(1. ) dimensional transient
ax ~ 0 —x = ~BWl.7)  conduction problems from 8 to
3, offering great convenience
0 =AX Bi7 in the presentation of results.
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Exact Solution of One-Dimensional Transient
Conduction Problem

X.7)= FX)G(r) 1| d&F 1dG r’F G . 5
OX,7) = FXOG(r)  LdF _1¢ "+ ANF=0 and — 421G =0
Fax* Gdr  dx? dr

F = Cicos(AX) + Cysin(AX) and G = Cye™*7
0 = FG = Cse™""[Ccos(AX) + Cysin(AX)] = ¢ "[Acos(AX) + Bsin(AX)]

A — C]C:; ELl'ld B = C2C3

ab(0, ) ) )

P =0— —e "T(AAsin0 + BAcos0) =0 — B=0 — 0= Ae " cos(AX)
dt(1.7) . 2_. . . 2 .

X = —Bif(l.7) — —Ae *7AsinA = —Bide ™" 7"cosA — AtanA = Bi

A tan A, = Bi

n=1

b= EAHE_"‘:JCUS[AHA’} PX.0O)=1 — 1= Eﬂnms{ﬁnl’}
n=1

4sin A,
2A, + sin(2A,)

-1 -1
J cos (A, X)dX = A, J cos?(A, X)dx — A, =
0 0

13



TABLE 4-1

Summary of the solutions for one-dimensional transient conduction in a plane wall of
thickness 2L, a cylinder of radius r,and a sphere of radius r, subjected to convention from
all surfaces.”

Geometry Solution A,'s are the roots of
= 4 sin A, ) o
Plane wall 0= _ e~ M cos (A /L) |, tan 1_ 5 Bi
= 2A, + sin(2A,)
. = 2 -}[(—‘in) 2 jj(}\n} .
Cylinder 0= > —— = e M Ty (Ar/r,) A, = Bi
:z=J}‘ﬂ Jﬁ {‘}hn} +'-"f]-'[-ﬁ-n]' "Iﬂ{-‘}lu}
= d(sin A, — A, CcOos A,) ., sin(A,x/L)
Sphere b= > e M | —A, cot A, = Bi

2\, — sin(2A,) A/ L

n=1

*Here ) = (T — T AT, — T.) is the dimensionless temperature, Bi = hL/ or hr, /k is the Biot number, Fo = 7 = ar/ L®
of ar / 12 is the Fourier number, and J, and J, are the Bessel functions of the first kind whose values are given in Table 4-3.
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9” — An E_AEIT CDS()’L” X)

4 sin A,

A =
"2), + sin(2A,)

A, tan A = Bi

ForBi=5 X=1,and = 0.2:

n A, A, 6.

I [.3138 1.2402 0.22321
2 4.0336 —0.3442 0.00835
3 6.9096 0.1588 0.00001
4 9.8928 —0.876 0.00000

The analytical solutions of
transient conduction problems
typically involve infinite series,
and thus the evaluation of an
infinite number of terms to
determine the temperature at a
specified location and time.

The term in the series solution of
transient conduction problems decline
rapidly as n and thus A, increases
because of the exponential decay

function with the exponent —A 7.

15



Approximate Analytical and Graphical Solutions

The terms in the series solutions converge rapidly with increasing time,
and for T > 0.2, keeping the first term and neglecting all the remaining

terms in the series results in an error under 2 percent.
Solution with one-term approximation

T>0.2

T >0.2

T >0.2

= Alf?_"}"TT

| T(x.tn — T, 2 ‘
Plane wall: 0 a1 = T = A,e M7 cos (A X/L),
o I'irn)—71. 2
Cylinder: 0. = T —T. Ae M7 Jo(Ay i),
I(r,1) — T, 2_sin(Ar/r,)

! L — ) i — J—TIL] T ! L) 1)
Sphere: 0o T —T, Ae W
. =7 e — ( _ LT,
Center of plane wall (x = 0): Oo wal = T-T.
—~ . . - .Tﬂ _ TI
Center of cylinder (r = 0): 0p. eyt = ﬁ
- . i .Tﬂ, _ T‘J:
Center of sphere (r = 0): 0o, sph = ﬁ

.:4 ] {.?_‘:‘{l‘i’ :

e

14]{.}_3{[] ’
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TABLE 4-2

Coefficients used in the one-term approximate solution of transient one-

dimensional heat conduction in plane walls, cylinders, and spheres (Bi = hlk
for a plane wall of thickness 2L, and Bi = fr,/k for a cylinder or sphere of

TABLE 4-3

The zeroth- and first-order Bessel
functions of the first kind

radius r,)
Plane Wall Cylinder Sphere

Bi Ay A, A A, Ay A,
0.01 0.0998 1.0017 0.1412 1.0025 0.1730 1.0030
0.02 0.1410 1.0033 0.1995 1.0050 0.2445 1.0060
0.04  0.1987 1.0066 0.2814 1.0099 0.3450 1.0120
0.06  0.2425 1.0098 0.3438 1.0148 0.4217 1.0179
0.08 02791 1.0130 0.3960 1.0197 0.4860 1.0239
0.1 0.3111 1.0161 0.4417 1.0246 0.5423 1.0298
0.2 0.4328 1.0311 0.6170 1.0483 0.7593 1.0592
0.3 0.5218 1.0450 0.7465 1.0712 0.9208 1.0880
0.4 0.5932 1.0580 0.8516 1.0931 1.0528 1.1164
0.5 0.6533 1.0701 0.9408 1.1143 1.1656 1.1441
0.6 0.7051 1.0814 1.0184 1.1345 1.2644 1.1713
0.7 0.7506 1.0918 1.0873 1.1539 1.3525 1.1978
0.8 0.7910 1.1016 1.1450 1.1724 1.4320 1.2236
0.9 0.8274 1.1107 1.2048 1.1902 1.5044 1.2488
1.0 0.8603 1.1191 1.2558 1.2071 1.5708 1.2732
2.0 1.0769 1.1785 1.5995 1.3384 2.0288 1.4793
3.0 1.1925 1.2102 1.7887 1.4191 2.2889 1.6227
4.0 1.2646 1.2287 1.9081 1.4698 2.4556 1.7202
5.0 1.3138 1.2403 1.9898 1.5029 2.5704 1.7870
6.0 1.3496 1.2479 2.0490 1.5253 2.6537 1.8338
7.0 1.3766 1.2532 2.0937 1.5411 2.7165 1.8673
8.0 1.3978 1.2570 2.1286 1.5526 2.7654 1.8920
9.0 1.4149 1.2598 2.1566 1.5611 2.8044 1.9106
10.0 1.4289 1.2620 2.1795 1.5677 2.8363 1.9249
20.0 1.4961 1.2699 2.2880 1.5919 2.9857 1.9781
30.0 1.5202 1.2717 2.3261 1.5973 3.0372 1.9898
40.0 1.5325 1.2723 2.3455 1.5993 3.0632 1.9942
50.0 1.5400 1.2727 2.3572 1.6002 3.0788 1.9962
100.0 1.5552 1.2731 2.3809 1.6015 3.1102 1.9990
oo 1.5708 1.2732 2.4048 1.6021 3.1416 2.0000

7 Jalm) Jy(n)
0.0 1.0000 0.0000
0.1 0.9975 0.0499
0.2 0.9900 0.0995
0.3 0.9776 0.1483
0.4 0.9604 0.1960
0.5 0.9385 0.2423
0.6 0.9120 0.2867
0.7 0.8812 0.3290
0.8 0.8463 0.3688
0.9 0.8075 0.4059
1.0 0.7652 0.4400
1.1 0.7196 0.4709
1.2 0.6711 0.4983
1.3 0.6201 0.5220
1.4 0.5669 0.5419
1.5 0.5118 0.5579
1.6 0.4554 0.5699
1.7 0.3980 0.5778
1.8 0.3400 0.5815
1.9 0.2818 0.5812
2.0 0.2239 0.5767
2.1 0.1666 0.5683
2.2 0.1104 0.5560
2.3 0.0555 0.5399
2.4 0.0025 0.5202
2.6 —0.0968 —0.4708
2.8 —0.1850 —0.4097
3.0 —0.2601 —-0.3391
3.2 —0.3202 —-0.2613
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(a) Midplane temperature
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The dimensionless temperatures anywhere in a plane wall,
cylinder, and sphere are related to the center temperature by

= cos| — |, =Jo| — . and =
00, wall L Fo 0, sph AT,

9(}, cyl

(a) Finite convection coetficient

The specified surface temperature corresponds to the case of convection
to an environment at 7_ with with a convection coefficient h that is infinite.

h — <

(b) Infinite convection coetficient
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0 Sin A i
Plane wall: ()— =1 =0y wa1 0= | pc,[Tix,1) — T}]dV
Lmux wall ‘ )L] v
Cylind ( ) | —2p, A
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(a) Maximum heat transfer (f — o0) Bi=... o
) hzﬁf quf _ Qm“ o
The fraction of total heat transfer 2
Q/Q,., up to a specified time t is (Gréber chart)
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The physical significance of the Fourier number

The rate at which heat 1s conducted
af  KkL* (1/L) AT across L of a body of volume L*

T

72 pc, Lt AT ~ The rate at which heat is stored
in a body of volume L’

* The Fourier number is a L
measure of heat y | L
conducted through a body |

relative to heat stored.

* Alarge value of the Q anmluclccl

Fourier number indicates - -

faster propagation of heat |

through a body. ,,J- ________
//f Q /
Fourier number at time t stored

can be viewed as the Q

ratio of the rate of heat Fourier number: T = afg _ cfwmluclcul
conducted to the rate of L2 O, .
heat stored at that time. stored

23



TRANSIENT HEAT CONDUCTION IN SEMI-
INFINITE SOLIDS

o0

Plane
surface

Schematic of a semi-infinite body.

For short periods of time, most bodies
can be modeled as semi-infinite solids
since heat does not have sufficient time
to penetrate deep into the body.

Semi-infinite solid: An idealized
body that has a single plane surface
and extends to infinity in all
directions.

The earth can be considered to be a
semi-infinite medium in determining
the variation of temperature near its
surface.

A thick wall can be modeled as a
semi-infinite medium if all we are
interested in is the variation of
temperature in the region near one
of the surfaces, and the other
surface is too far to have any impact
on the region of interest during the
time of observation.
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Analytical solution for the case of constant temperature T, on the surface

e _ FT 19T
Differential equation: S ==
ox o dr
Boundary conditions: 70,1 =T, and T(x — 1) =T,
Initial condition: I(x,0)=T,
X
Similarity variable: = —
. Tt 0T 10T x
S =" and n=——
d°T dT S Vaat
— 9
d? "y oT dTon  x  dT

at dn ot 2\/aar @

T0)=T7, and T(n—>») =T, oT dTdn 1 dT

T—T, N ox  dn ox At d
T T =—=| e “du=erf(n) =1 — erfc(n) ? Vdat @ i
i 5 AV ‘0 EjET_ d (EjT) aﬂ B 1 d°T
‘ 7 o error ox° dn \ox/ ox 4dat (hff
erf(n) = Vo e e " du e Transformation of variables
> in the derivatives of the
erfe(n) = 1 — - o~ 4, Complementary heat conduction equation

Vol error function by the use of chain rule. 2°



1.0 I L TABLE 4-4
—_ / N The complementary error function
" i

E”- 0.8 7 arfc () 7 erfc () 7 arfc ()
> | | 000 1.00000 | 0.38 05910 |0.76 0.2825
g 0.6 / 2T 0.02 0.9774 | 0.40 0.5716 |0.78 0.2700
=5 b / | El‘f(ﬂ)ij e~"du 4 004 0.9549 | 042 05525 |0.80 0.2579
£ 04 7 |J 0 0.06 0.9324 | 0.44 05338 |0.82 0.2462
= L | o008 09099 | 0.46 0.5153 |0.84 0.2349
S 05 0.10 0.8875 | 0.48 0.4973 |0.86 0.2239
g Y 0.12 0.8652 | 0.50 0.4795 |0.88 0.2133
<4  0.14 0.8431 | 052 0.4621 |0.90 0.2031
0.0 L1 ' ' e 0.16 0.8210 | 0.54 0.4451 | 0.92 0.1932
00 05 1.0 15 20 25 30 18 0.7991 | 0.56 0.4284 | 094 0.1837
n 020 07773 | 0.58 0.4121 |0.96 0.1746
. 022 07557 | 0.60 0.3961 |0.98 0.1658
Error function is a standard 024 07343 | 0.62 0.3806 | 1.00 0.1573
mathematical function, just like the 0.26 0.7131 | 0.64 0.3654 | 1.02 0.1492
sine and cosine functions, whose 028 06921 | 0.66 0.3506 |1.04 0.1413
. 0.30 06714 | 0.68 0.3362 |1.06 0.1339
value varies between 0 and 1. 032 0.6509 | 0.70 0.3222 |1.08 0.1267
0.34 06306 | 0.72 0.3086 |1.10 0.1198
0.36 0.6107 | 0.74 0.2953 |1.12 0.1132

o2 k(T, — T
= —kCie™ " —— =

n=0 \ dat n=0 \ mrat 26




Case 1: Specified Surface Temperature, I, = constant Analytical
solutions for

Ix, 1) — 1, | x + k(T, —T) different
= erfc — | and g7 = —
I, — T, 2V at V mat boundary
conditions on
Case 2: Specified Surface Heat Flux, ¢; = constant. the surface
| [dar X2 ‘ X
I(x,t) — T, = 4 |—exp | ——— | — xerfc —
AR T N a

Case 3: Convection on the Surface, f}'s(r) = h|T_ — T(0,1)].

I(x,1) — T, X hx  hat) X N h\ at

= erfc — exp + erfc
I.—T, 2Vat koK NVat Kk

Case 4: Energy Pulse at Surface, ¢, = constant.

X

€ 2
: exp ()
kN mtla dat 27

I(x, 1) — T =



erfc(n) 7
0.4 N

= \ -1 Dimensionless
0.2

).2 AN temperature distribution
= \ - for transient conduction
0.0 L _ I — ——db—uJ |n a semi-infinite solid
0.0 0.5 1.0 [.5 2.0 whose surface is
n= —* maintained at a constant
M temperature T..
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T,= 100°C ' G, = 7000 W/m?
(a) Specified surface temperature, T, = constant. (b) Specified surface heat flux, ¢, = constant.

Variations of temperature with position and time in a large cast iron block (o = 2.31 X 107> m?s,
k = 80.2W/m - °C) initially at O °C under different thermal conditions on the surface.
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T.. = 100°C T;=0°C
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{c) Convection at the surface

100

80

s
f~
20
0
-

e,= 1.7%107 J/m?

0.2 0.4 0.6 0.8
Distance from surface x, m

T;=0°C

{cf) Energy pulse at the surface, ¢, = constant

Variations of temperature with position and time in a large cast iron block (o = 2.31 X 107> m?s,
k = 80.2W/m - °C) initially at O °C under different thermal conditions on the surface.
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Variation of temperature with position and time in a semi-infinite
solid initially at temperature T, subjected to convection to an 31

environment at 7_ with a convection heat transfer coefficient of h.



Contact of Two Semi-Infinite Solids

When two large bodies A and B, initially at
uniform temperatures T,,and T, are
brought into contact, they instantly achieve
temperature equality at the contact surface.

If the two bodies are of the same material,
the contact surface temperature is the
arithmetic average, T, = (T, +T;))/2.

If the bodies are of different materials, the
surface temperature T, will be different

than the arithmetic average.

r‘{»q(Tg o T&:J kB(T.s o TB“-') Til o Ts ,-"I(kp(ﬁ,n)ﬂ
Gsa = qsp — — — = — —\/

— =4 ‘
V ot \ 7 agt T,—Ts; \ (KpCp)a

\,"{R;J{},,JJM + V {MJ{!,)BTB{ The interface temperature of two bodies
—_— brought into contact is dominated by the

Ts _

V(kpc,)a + V (kpc,)p body with the larger kpc,,.

EXAMPLE: When a person with a skin temperature of 35°C touches an aluminum
block and then a wood block both at 15°C, the contact surface temperature will be
15.9°C in the case of aluminum and 30°C in the case of wood.

Contact of two semi-infinite solids of
different initial temperatures.
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TRANSIENT HEAT CONDUCTION IN
MULTIDIMENSIONAL SYSTEMS

Using a superposition approach called the product solution, the transient
temperature charts and solutions can be used to construct solutions for the two-
dimensional and three-dimensional transient heat conduction problems
encountered in geometries such as a short cylinder, a long rectangular bar, a
rectangular prism or a semi-infinite rectangular bar, provided that all surfaces of
the solid are subjected to convection to the same fluid at temperature T_, with the

same heat transfer coefficient h, and the body involves no heat generation.

The solution in such multidimensional geometries can be expressed as the
product of the solutions for the one-dimensional geometries whose intersection
Is the multidimensional geometry.

T, T,

h h T. /—i\ The temperature in a short
. h cylinder exposed to

e T op E:::M Hea anvectionl?‘rom all surfaces
AT A5 T(rx.r) P

ransfer y,3ries in both the radial and
axial directions, and thus

\T/ heat is transferred in both

directions. 33

(a) Long cylinder (b) Short cylinder (two-dimensional)



The solution for a multidimensional geometry is the product of the solutions of the
one-dimensional geometries whose intersection is the multidimensional body.

The solution for the two-dimensional short cylinder of height a and radius r, is

equal to the product of the nondimensionalized solutions for the one-dimensional
plane wall of thickness a and the long cylinder of radius r,.

I(r.x,t)y — T, - (T(x, 1) — T, I(r,t)—T.
T,- - T:c short o T,- _ TI plane Tf- - Tf infinite

cylinder wall cylinder

}:;C 7~ Plane wall
U‘i e
T A short cylinder of radius
@ r, and height a is the
L | intersection of a long
M-‘U i ; ‘ cylinder of radius r, and a
“— Long plane wall of thickness a.

cylinder 34



T(x.v,1)— T,
T — T rectangular — 9“.;'”{,"{. UHu;.II(Y* l)

bar

- Plane wall 9 p = Ix, 1) — T,
/ Wﬂll('x' } — Tf _ Tm plane

wall
Tg:. // T(.? f) _ Tm
h 9(:3’]('}“ 1= infinite

Tf N T'x" cylinder

— Tx,t)—T,
// 6'sre:mi—inf('x" 1 = T.— T semi-infinite

e )
VL //

( / Plane wall
- a

A long solid bar of rectangular profile
a x b is the intersection of two plane
walls of thicknesses a and b.
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The transient heat transfer for a two-dimensional
geometry formed by the intersection of two one-
dimensional geometries 1 and 2 is

Q)H‘m‘\' total. 2D Qm;l.\; | Ql]lil.\; 2 Q)l]l:l‘i |

Transient heat transfer for a three-dimensional body
formed by the intersection of three one-dimensional

Qm:m otal. 3D Q‘mm; ]
N Qnmx 3 - Qmux | Qm"‘“ 2




Multidimensional solutions expressed as products of one-dimensional
solutions for bodies that are initially at a uniform temperature T, and
exposed to convection from all surfaces to a medium at T

B(r, 1) = Gey(r, 1)
Infinite cylinder

i

J B

— r

Blx, r, )= lw 1 Beomivinr (. 1)

Semi- Illf inite ¢ ¥ linder

e | i

B(x, r, 1) = B (1, 1) By (X 1)

Short cylinder

(. '\___ﬂ i \\f

\ N lj .

|I \" )

.!I \II [ X ||
| y l i

\ ) | | .

| &=——>X \ | | == ¥vA T~ _

h —_" »

! Y T s { T
'-_ | = T — | et -

b | N )

X P b e . -
\ _—— L S X
- A

B, 1) = H‘St“l‘llj-]ﬂf (X, 1)
Semi-infinite medium

a0, y.h)= H:;emj-lnf (x, 1) a.:emi-jnf (¥. 1)
Quarter-infinite medinm

Bix.y, 2.0) =
IB.~'-emi-lnf (x, ) 'Hr;emj-lnf ':.."'~ f) IB:;uenll-jnf [
Corner region of a large medium

. 1)
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Multidimensional solutions expressed as products of one-dimensional
solutions for bodies that are initially at a uniform temperature T, and exposed

to convection from all surfaces to a medium at T_

1
oL 2L \\”--
\I\
¥ .
.
4, \
F—— X 1“\
0o (£ Yy I
;7’2’.
X
B(x.vz.1) =
9':-1'- f) = g-.x-au':-"-'- f) 9(1 ¥ 1) = g“_ﬂu (x, 1) tgi‘n‘.:'-|t'|i-im"':."‘1 )] 8'-'» all (x, 1) E;_}s-:'-mi-inr' l:“ ) E;_]‘s-:'-mi-iut'I:":" )
Infinite plate (or plane wall) Semi-infinite plate Quarter-infinite plate

¥
s i
X l
| IR
| | ¥
: Lz
| | X
| | *
| : 1
| < 0
J=== s y- e
- e i‘. -
L
v - owran=
P o o cal] L0 TV TV ) By (2. 1)
0%, 3, 1) = Oy (5. D Oy gy (3, 1) Oant (% 1) Bigaq (V0 1) Biemmicing (2. 1) wall (5 D) Sveat (1) Eucan (2,1)

Rectangular parallelepiped

Infinite rectangular bar Semi-infinite rectangular bar



Summary

Lumped System Analysis
v' Criteria for Lumped System Analysis

v Some Remarks on Heat Transfer in Lumped Systems

Transient Heat Conduction in Large Plane Walls, Long
Cylinders, and Spheres with Spatial Effects

v" Nondimensionalized One-Dimensional Transient Conduction
Problem

v" Exact Solution of One-Dimensional Transient Conduction
Problem

v" Approximate Analytical and Graphical Solutions
Transient Heat Conduction in Semi-Infinite Solids

v' Contact of Two Semi-Infinite Solids

Transient Heat Conduction in Multidimensional Systems
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