5-1 m INTRODUCTION

You are already familiar with
numerous conservation laws
such as the laws of
conservation of mass,
conservation of energy, and
conservation of momentum.

Historically, the conservation
laws are first applied to a fixed
guantity of matter called a
closed system or just a system,
and then extended to regions
In space called control
volumes.

The conservation relations are
also called balance equations
since any conserved quantity
must balance during a process.

FIGURE 5-1

Many fluid flow devices such as this
Pelton wheel hydraulic turbine are
analyzed by applying the conservation
of mass and energy principles, along
with the linear momentum equation.



Conservation of Mass

The conservation of mass relation for a closed system undergoing a
change Is expressed as m_ , = constant or dm, J/dt = 0, which is the

statement that the mass of the system remains constant during a
process.

Mass balance for a control volume (CV) In rate form:
dmey
dft

Conservation of mass: My — Moy =

the total rates of mass flow into

n.. and m
- out - and out of the control volume

the rate of change of mass within the

dm ~./dt :
Ch control volume boundaries.

Continuity equation: In fluid mechanics, the conservation of
mass relation written for a differential control volume is usually
called the continuity equation.



The Linear Momentum Equation

Linear momentum: The product of the mass and the velocity of a
body is called the linear momentum or just the momentum of the
body.

The momentum of a rigid body of mass m moving with a velocity
vVismy.

Newton’s second law: The acceleration of a body is proportional
to the net force acting on it and is inversely proportional to its

mass, and that the rate of change of the momentum of a body is
equal to the net force acting on the body.

Conservation of momentum principle: The momentum of a
system remains constant only when the net force acting on it is
zero, and thus the momentum of such systems is conserved.

Linear momentum equation: In fluid mechanics, Newton’s
second law is usually referred to as the linear momentum
equation.



Conservation of Energy

The conservation of energy principle (the energy balance): The
net energy transfer to or from a system during a process be equal to
the change in the energy content of the system.

Energy can be transferred to or from a closed system by heat or work.
Control volumes also involve energy transfer via mass flow.

. " l‘:-nfECV
Conservation of energy: Eyp— Eou =
' ' dt

E d E the total rates of energy transfer into
in Y Lou  and out of the control volume

AE. - It the rate of change of energy

~CV within the control volume boundaries

In fluid mechanics, we usually limit our consideration to
mechanical forms of energy only.



Conservation of Mass Principle

The conservation of mass principle for a control volume: The net mass transfer
to or from a control volume during a time interval At is equal to the net change
(increase or decrease) in the total mass within the control volume during At.

(T{‘rlfﬂ mass entering (Tnl:-ll Mass Icm-'ing) B ( Net change of mass
the CV during Ar the CV during At within the CV during At

N, — Moy = dmey/dt (kg/s)

)=}

m.,, — Moy = Amcey (k

m.,, and m_, the total rates of mass
' flow into and out of the
control volume

the rate of change of mass
within the control volume
boundaries.

dme/dt

Mass balance is applicable to
any control volume undergoing
any kind of process.

& Conservation of mass principle

for an ordinary bathtub. >




dm = p dV/. Total mass within the CV: Mey = J pdV
cv

™

. : - dmey — d
Rate of change of mass within the CV": = — pdV
' ' dt dt | ..
Cv
. . o =
Normal component of velocity: Vio=Vcos=V-n

Differential mass flow rate:  ém = pV, dA = p(V cos #) dA = p{‘?’ - 1) dA

Net mass flow rate: Moy = J S = J pV,dA = J p(V - 1) dA
Cs CS

CSs
-,
H"’ \
o \
£ av
|
l Jld
'{ dm
The differential control volume :
dV and the differential control " Control y
surface dA used in the volume (CV) ¢

derivation of the conservation of ~~L__-=~o__.7
mass relation.

4
!
{
A

Control surface (CS)

v/



General conservation of mass:

{JIII

{JIIIIT

L Y “CS

The time rate of change of mass within the control
volume plus the net mass flow rate through the control
surface is equal to zero.

d
— p dV + 2 ,rJ| V.IA Z p| V,
dt Jov out in
d | dmey
— | pdV= D m— D> m
'[!|r|' oV i ol
dB_, d | ( U
= = ‘ pbdV + ‘ pb(Ven)dA
dt dt
‘ov ‘ cs
B=m b=1 h=1
Y l Y
dm.,. d ‘ " 5 5
= WiV o o+ Ven)dA
ar ar |l " ‘ pe)

Y s

A=0

:§:fh

1 ont

The conservation
of mass equation
is obtained by
replacing B in the
Reynolds
transport theorem
by mass m, and b
by 1 (m per unit
mass = m/im = 1).
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(a) Control surface at an angle to the flow
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{B) Control surface normal to the flow

A control surface should
always be selected normal to
the flow at all locations where

it crosses the fluid flow to
avoid complications, even
though the result is the same.




Mass Balance for Steady-Flow Processes

During a steady-flow process, the total amount of mass contained within a
control volume does not change with time (m.,, = constant).

Then the conservation of mass principle requires that the total amount of mass
entering a control volume equal the total amount of mass leaving it.

m, =2 kg/s m, = 3 kg/s For steady-flow processes, we are interested

|
|
|
|
| CV
|
|
|
|

my =my + m, =15 kg/s

in the amount of mass flowing per unit time,
that is, the mass flow rate

M= > m (ke/s) Multiple inlets
n out and exits

Single
A, 29

mp=m, —  p VA = paVoAy oo

Many engineering devices such as nozzles,
diffusers, turbines, compressors, and
pumps involve a single stream (only one
inlet and one outlet).

Conservation of mass principle for a two-
inlet—one-outlet steady-flow system. 8



Special Case: Incompressible Flow

The conservation of mass relations can be simplified even further when
the fluid is incompressible, which is usually the case for liquids.

m, = 2 kg/s 2 V = 2 V (1]]3/5;) _Steady,

- iIncompressible
1t
V,=0.8 m’s " o

- W , : Steady,
N L Vi =V, = VIA, = V,A, incompressible

™ flow (single stream)

T—

Alr

Compressor

There is no such thing as a “conservation of volume”
principle.

However, for steady flow of liquids, the volume flow
rates, as well as the mass flow rates, remain
constant since liquids are essentially incompressible
substances.

s - s st

my =2 kg/s During a steady-flow process, volume
flow rates are not necessarily conserved

- -
Vi = 1.4 m"/s although mass flow rates are.



Example 1

The open tank in Fig. P3.14 contains water at 20°C and is
being filled through section 1. Assume incompressible flow.
First derive an analytic expression for the water-level
change dh/dt in terms of arbitrary volume flows (Q,, Q..
(3) and tank diameter d. Then, if the water level & is con-

stant, determine the exit velocity V, for the given data
V, =3 m/s and Oz = 0.01 m’/s.

i
'1_,-‘
Jﬂ1 =001 m¥s

A%

| Water
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Example 2

GIVEN An airplane moves forward at a speed of 971 km/hr as
shown in Fig. E5.6a. The frontal mtake area of the jet engine 1s
0.80 m* and the entering air density 1s 0.736 kg/m’. A stationary
observer determines that relative to the earth. the jet engine
exhaust gases move away from the engine with a speed of

1050 km/hr. The engine exhaust area is 0.558 m”, and the exhaust
gas density 15 0.515 kg/m’.

FIND Estimate the mass flowrate of fuel into the engine in
kg/hr

'y

plane =

971 km'hr
el ——

A

Control volume

I

II|:-IanE= [ C—
971 kn'uhr,:f\—ll ———= L e
1 T,P'_- 2 m/nr
_'_II'#II

| -
W, = 10560 + 971 =

H'F] =] I'nl 'I
971 km'hr & 7 2021 km'hr
Section (2) 11

Section (1)

(a)




Linear Momentum

v d [ . I T
E F= At pV d\/ + ‘ pV(V -n)dA
“CY "CS
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Momentum-Flux Correction Factor

E ‘ | ||!.J]} |:4“-.-"I + E, E-"".r]":.u;: o E- ﬁ"'i:r |i".IZI'-'_

'”I'r ey out in

—3 —¥ —¥
Momentum flux across an inlet or outlet: J pV(V -n)dA. = BmV,,
A

PV -i)dA; | pV(V i) dA,

“A “Ac

JB 3 'r':']F:l'-'g B F'L.uﬂ*'q cpal.'g

g | | [ y
Momentum-flux correction factor: B =1— ".\_J dA,

13



Steady Flow

Steady linear momentum equation:



Example

Water is accelerated by a nozzle to an average speed of 20 m/s, and strikes
a stationary vertical plate at a rate of 10 kg/s with a normal velocity of
20 m/s (Fig. 6-22). After the strike, the water stream splatters off in all
directions in the plane of the plate. Determine the force needed to prevent
the plate from moving horizontally due to the water stream.

15



Example

A water jet of velocity V; impinges normal to a flat plate that moves to the right at velocity
V., as shown in Fig. 3.9a. Find the force required to keep the plate moving at constant veloc-
ity if the jet density is 1000 kg/m’, the jet area is 3 cm”, and Vi and V. are 20 and 15 m/s,
respectively. Neglect the weight of the jet and plate, and assume steady flow with respect to
the moving plate with the jet splitting into an equal upward and downward half-jet.

/r
r=p, r ______ —: CS
| ¥
| — V.
I |
Nozzle
[ S e, | Vf

16



The suggested control volume in Fig. 3.9a cuts through the plate support to expose the
desired forces R, and R,. This control volume moves at speed V. and thus is fixed relative
to the plate, as in Fig. 3.95. We must satisfy both mass and momentum conservation for the
assumed steady flow pattern in Fig. 3.9b. There are two outlets and one inlet, and Eq. (3.30)
applies for mass conservation:

Mo = Mg
or ALYy + pA Vs = gAY, — V) (1)

We assume that the water is incompressible p; = p, = p, and we are given that A, = A; = %Aj.
Therefore Eq. (1) reduces to

Vi + Vo= 2V, - V) @

Strictly speaking, this 1s all that mass conservation tells us. However, from the symmetry
of the jet deflection and the neglect of gravity on the fluid trajectory, we conclude that the
two velocities V, and V, must be equal, and hence Eq. (2) becomes

e P e (3)

This equality can also be predicted by Bernoulli's equation in Sect 3.5. For the given numer-
ical values, we have

V,=V,=20—15=5mls

Now we can compute R, and R, from the two components of momentum conservation.
Equation (3.40) applies with the unsteady term zero:

Y F. =R, =mu + myu, — i (4)

where from the mass analysis, m, = m, = 3m; = 3p;A(V; — V.). Now check the flow direc-
tions at each section: u, = u, =0, and w, = V, — V. = 5 m/s. Thus Eq. (4) becomes

R, = =i = ~[p ALY, = VIV, = V) )



J_,.J""
P=F T 7 _
| -
| -V
@ I
F. | |
o |
Nozzle
s, e V.
\“h T
[J)]

()

For the given numerical values we have

EiE R e =
R
| - |
CS, I ¥
| | ‘
| |
| | R;
V.o Y ——l e
Sy [
) |
| | |
horssa e 2
l(‘:‘f\‘q_lg_
=k S T
(bl

R, = —(1000 kg/m’)(0.0003 m*)(5 m/s)* = —7.5 (kg - my/s* = 75N

Ans.
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Problem

* A 2.8 m3/s water jet iIs moving In the positive x-direction
at 5.5 m/s. The stream hits a stationary splitter, such that
half of the flow is diverted upward at 45° and the other
half is directed downward, and both streams have a final
speed of 5.5 m/s. Disregarding gravitational effects,
determine the x- and z-components of the force required
to hold the splitter in place against the water force.

/l



-4 m THE BERNOULLI EQUATION

Bernoulli equation: An approximate relation between pressure,
velocity, and elevation, and is valid in regions of steady,
Incompressible flow where net frictional forces are negligible.

Despite its simplicity, it has proven to be a very powerful tool in fluid
mechanics.

The Bernoulli approximation is typically useful in flow regions outside
of boundary layers and wakes, where the fluid motion is governed by
the combined effects of pressure and gravity forces.

Bernoulli equation valid The Bernoulli equation is an
—_;———————11"‘““*%___‘ approximate equation that is valid
\\\ only in inviscid regions of flow
_/& where net viscous forces are
— - negligibly small compared to
—_ AN inertial, gravitational, or pressure
T %E forces. Such regions occur
</~ outside of boundary layers and

Bernoulli equation not valid  yakes. 20



Derivation of the Bernoulli Equation

Steady flow along a streamline

(P +dP)dA

it

The forces acting on a fluid
particle along a streamline.

The sum of the kinetic, potential, and
flow energies of a fluid particle is
constant along a streamline during
steady flow when compressibility and
frictional effects are negligible.

v
— (P + dP)dA — Wsin 6 = mV —

ds

2F5.= Ma; p a4

m = pV = pdA ds
sin H = dz/ds

W =mg = pg dA ds

1V
= pdAds V —
ds

—_
-
e

—dP dA — pg dA ds

ds
—dP — pgdz=pVdV Vdv=1av?)
dP )
—+3d(V?) + gdz=0
f
|.. f-e'IJD
Iop

Steady flow:

Ve
-+ — + g7 = constant (along a streamline)

s

Bernoulli

Steady,\mcompress:ble flow: equation

The Bernoulli equation between any
two points on the same streamline:
"DI V T" P: 'i::l.
—+—+¢

P 2 P

_|_

< - + 9%

s
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(Steady flow along a streamline)

General:

- )
%—“’ + V? + gz = constant

=

Incompressible flow (p = constant):

P ¥
— 4+ — + g7 = constant
P 2

=

The incompressible Bernoulli equation is
derived assuming incompressible flow,
and thus it should not be used for flows
with significant compressibility effects.

22



Potential
energy

+ L;— + g7 = constant

Kinetic
energy

The Bernoulli equation
states that the sum of the
kinetic, potential, and flow
energies of a fluid particle is
constant along a streamline
during steady flow.

The Bernoulli equation can be viewed as the
“conservation of mechanical energy principle.”

This is equivalent to the general conservation
of energy principle for systems that do not
Involve any conversion of mechanical energy
and thermal energy to each other, and thus the
mechanical energy and thermal energy are
conserved separately.

The Bernoulli equation states that during
steady, incompressible flow with negligible
friction, the various forms of mechanical
energy are converted to each other, but their
sum remains constant.

There is no dissipation of mechanical energy
during such flows since there is no friction that
converts mechanical energy to sensible
thermal (internal) energy.

The Bernoulli equation is commonly used in
practice since a variety of practical fluid flow
problems can be analyzed to reasonable
accuracy with it.

23



Limitations on the Use of the Bernoulli Equation

1. Steady flow The Bernoulli equation is applicable to steady flow.

2. Frictionless flow Every flow involves some friction, no matter how small,
and frictional effects may or may not be negligible.

3. No shaft work The Bernoulli equation is not applicable in a flow section that
involves a pump, turbine, fan, or any other machine or impeller since such
devices destroy the streamlines and carry out energy interactions with the
fluid particles. When these devices exist, the energy equation should be
used instead.

4. Incompressible flow Density is taken constant in the derivation of the
Bernoulli equation. The flow is incompressible for liquids and also by gases
at Mach numbers less than about 0.3.

5. No heat transfer The density of a gas is inversely proportional to
temperature, and thus the Bernoulli equation should not be used for flow
sections that involve significant temperature change such as heating or
cooling sections.

6. Flow along a streamline Strictly speaking, the Bernoulli equation is
applicable along a streamline. However, when a region of the flow is
irrotational and there is negligibly small vorticity in the flow field, the

Bernoulli equation becomes applicable across streamlines as well.
24



A sudden A long narrow
expansion @ tube

4

oo

™
)

—

¥

@

—

A fan

O |0 @M@#’l\
. | |

ﬂma wake™

A heating section j\\—::
— __________\—-___
I, 7 —
_»r"}’f /' 2 Frictional effects, heat transfer, and components
W/ that disturb the streamlined structure of flow make
Streamlines the Bernoulli equation invalid. It should not be used
pV:oop V2 in any of the flows shown here.
F+?+g;.]: j—]+? + 842

When the flow is irrotational, the Bernoulli equation becomes applicable
between any two points along the flow (not just on the same streamline).

25



EXAMPLE 5-5 Spraying Water into the Air

Water is flowing from a hose attached to a water main at 400 kPa gage (Fig.
H—38). A child places his thumb to cover most of the hose outlet, causing a

thin jet of high-speed water to emerge. If the hose is held upward, what is
the maximum height that the jet could achieve?

@
Ay e

h#
i

Water jet

£
& o
5
| ]

Magnifying '1!
Y, glass }|
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: EXAMPLE 5-6 Water Discharge from a Large Tank

™ A large tank open to the atmosphere is filled with water to a height of 5 m
:fmm the outlet tap (Fig. 5-39). A tap near the bottom of the tank is now
= opened, and water flows out from the smooth and rounded outlet. Determine
m the water velocity at the outlet.

N

20

Sm Water

27



5-5 8 GENERAL ENERGY EQUATION

" pg,=10k)  Ein— Ey = AE

— £ KE, =0 .
. . dE,.. . . d
'.;' . _|_ H_.?' ) — ol _ _|_ ¥ _ _—
g'_-l'I.E."[ in net in {_,‘rr -net 1n H net in ﬂrr l“r:raf: du
Az o Qretin = Zin — Zou Hﬁnm in H.'f'm o Woul
| ! ‘! 1,-'2
‘ ‘PEq:?kJ €=u+ke+pe=u+?+g:
| m Q KE,=3kJ
/ QDLH_ )] L'J
The first law o_f — ’_—} The energy
thermody|_1am|cs (the | | change of a
conservation of energy L AE=(15-3)+6 | system during a
principle): Energy =18k | process is equal to
cannot be created or | | Wanar,in =0 K] the net work and
destroyed during a | | [ heat transfer
process; it can only | | \ between the
change forms. l=———— t— ‘‘‘‘ - system and its

Q =15k] surroundings.



Energy Transfer by Heat, Q

Thermal energy: The sensible
and latent forms of internal
energy.

Heat Transfer: The transfer of
energy from one system to
another as a result of a
temperature difference.

The direction of heat transfer is
always from the higher-
temperature body to the lower-
temperature one.

Adiabatic process: A process
during which there is no heat
transfer.

Heat transfer rate: The time
rate of heat transfer.

Room air
25°C
No heat Heat Heat
transfer 8 J/s 16 J/s
Q_@_}\ P ":;
Sod? Soda
— . » .

25°@ 15°C 5°C

Temperature difference is the driving
force for heat transfer. The larger the
temperature difference, the higher is

the rate of heat transfer. -



Energy Transfer by Work, W

* Work: The energy transfer associated with a force acting through a
distance.

* Arising piston, a rotating shaft, and an electric wire crossing the
system boundaries are all associated with work interactions.

* Power: The time rate of doing work.

* Car engines and hydraulic, steam, and gas turbines produce work;
compressors, pumps, fans, and mixers consume work.

7 — A/ 7 7 7
Htﬂ'm] o shaft + U’p['esmn'e + Hvismua + other

W, ... The work transmitted by a rotating shaft

S

W, cssure The work done by the pressure forces on the control surface
The work done by the normal and shear components of

inscous
viscous forces on the control surface
W _.. . The work done by other forces such as electric, magnetic, and

other

surface tension

30



Shaft Aforce F acting through a moment - .
= Fr — = —
Work arm r generates a torque T P

This force acts through a distance s = (27r)n

Shaft

T
work Wy, = Fs = | — | (2mrm) = 27nT (kJ)

r
The power transmitted through the shaft is the shaft work done per unit

Wshaft — sthﬂﬂ — 21'-"--]‘:""Tsl:msnﬁ Wsh — 27"—”T (kW)1e:

Boat Wy, =2nnT

\

Engine

o _ Shaft work is proportional to the
Energy transmission through rotating shafts torque applied and the number

IS commonly encountered in practice. of revolutions of the shaft.



Work Done by Pressure Forces
SW,

0 H';PFESSUTE =0 H'fbuunda:}r = PA Vpismn Vpi_m_.::.n = ds/dt

oundary = PA ds

W essue = —P dA V, = —P dA(V - 1)

s ( = ( P A
Wiressure,netin = = | PV i) dA = — | = p(V - i) dA
<A <A I
IHr'rruest in — IHr'rs.ha’ft, net in + H'rpressure. netin IHr'rshzlﬂ, netin
JA
P .-"'L" -ﬂ\
-
ff ‘t.._____'
’.r dv P, —
- \ n
L _____________ I < a P 7
ds A" : dm _,"' 5
M B % I dA :
T I I
Vpiston ' System y v
| % /
! /
System e 4
(gas in cylinder) e alme 4 j
System boundary, A
(a) (b)

P(V - i) dA

The pressure force

acting on (a) the moving
boundary of a system in

a piston-cylinder device,
and (b) the differential
surface area of a

system of arbitrary

shape. 32



The conservation of energy equation is
obtained by replacing B in the Reynolds
transport theorem by energy E and b by e.

dE

S¥S

dt

. 3 .
Oretin T Winati, netin + W pressure, net in

e=u+ke+pe=u+V42+ gz

B _d J v + J (V, - A
= ep ey, " n
dt dt Jov Jos
Qretin T Wenatt, netin + wfpressure, netin E epdV +
“CV

The net rate of energy The time rate of

transfer into a CV by | = | change of the energy

heat and work transfer content of the CV

dBy,, d [ .
bpdV + ‘ bV, n)dA
dt dt
‘v ‘CS ‘
B=E b=e¢ b=e¢e
| | |
lGFE:S}'S d " [ — —
epdV + ‘ ep(V,* n)dA
dt dt
‘v ‘CS
fﬁp{‘i_},. - 1) dA

The net flow rate of

+ | energy out of the control

surface by mass flow

~ 1 d (P L
Qnet in + IH"rshstﬂ, netin — E ep d\/ + J (_ + E?)ji'lr 1",- - 1) dA
I ey Jos \P
- . . “" i r "D
Fixed CV- Quetin + Wanaht netin = | ep dV + ‘ (_ +e
o dr | | P

“CV “Cs

),H{ V- 1) dA
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In a typical engineering problem, the \Qm .
control volume may contain many =TT \ Out
inlets and outlets; energy flows in at . \‘\’J = Moy
each inlet, and energy flows out at cnmg& R TE‘-I'E}'M
each outlet. Energy also enters the - med] \
COnro
control volume through net heat volume l
IV ' 7
transfer and net shaft work. . /r
”J]l
- Cnergy;, DHEX//. \\ Hr shaft. net in
m= | p(V-n)dA, louts ‘3'“
A, ENErgy, out
Eﬂm‘g}rmlt
D otia + W _ 4 v+ L+ -3
Lnet in shaft, netin — dt e ep — m o & - M e = u + ngz + g:
. . {d | B 12 ‘ p 12
1::h)nnclm + H...~~I‘|:|I'L net 1n = _i‘ | ¢ -'” “U + v ’I” + u + _1 + _5{:. o E my = + u + T + :;,:
ar Jovy tlll P = in P -
- d | i Ve J 2
Unl.lm + ”‘a.hli'[-nc[in = . ‘:.r”{'!”v'"—l_ T-"”("‘ +_+ g2 E”I’(-‘II +_+
YOV vt = in =

h=u+ Pv=u-+ Plp
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5-6 m ENERGY ANALYSIS OF STEADY FLOWS
Qnm + Eﬂm etin = Erh(h + g -+ re;*) — Erh(h + ; + gf.)

ol in

The net rate of energy transfer to a control volume (hl Vi 331)
by heat transfer and work during steady flow is 2 I 27T
equal to the difference between the rates of N '\_
outgoing and incoming energy flows by mass CD\ Fd N
flow. {/ control \

. . ] 1#’% — 1#’% \ volume ;I
Cretin T Wansh netin = ?”(hz — I+ 2 + 8(z — 31}) N _ Y.
single-stream devices Out / -7 \

L‘% - F% /® Qﬂt‘[ int H;Shajh net in

et in + Wehaft, net in — h? — Ihl + ; + g{‘:{l — E]\JI

, V3
m(h3+ = +g:.3)

7

e

h=u+ Pv=u-+ Plp

P, V2 P, V2
Wehaft, net in +—+ T + g1 = + _
Mmoo 2 P2 2

A control volume with
only one inlet and one
outlet and energy
interactions.

+ gz + (U2 — Uy — Gnetin)
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Ideal flow (no mechanical energy loss):

ot
Getin = Wz — U The lost mechanical f ,ri/l

energy in a fluid flow

Real flow (with mechanical system results in an 15.2°C
energy loss): increase in the ir!ternal T Au = 0.84 kI/kg
. e — e —a energy of the fluid and AT = 0.2¢C
e s 12 = 21 ot i thus in a rise of fluid
temperature.
€mech, in = €mech, out + €mech, loss p
p
+P+F2+ P2+V3+ + |
W - — Iy =—+—= 7, te
Vshaft, net in o 7 541 P 7 83 mech, loss 2 kW
o | Do = 0.70
Wohaft, netin — H*pump ~ Wiurbine 1 T i
P, Vi P, V3 0
JrT + A + g7 +w pump JrT + N + 222+ Worbine T €mech, loss 15.0°C
- S Water

(P TL]Z 3 (P TL:: 7 '
H"(_ + + 841 + Hl:l'-ul'ﬂr' - HII(I{J- T ) + a2 + H':ll.lrhin-: + E

mech, loss

EJ'DCCh_lEIHH = Em::vh loss, pump + Em-:ch loss, turbine + Em-:ch loss, piping
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A typical power plant
has numerous pipes,
elbows, valves, pumps,
and turbines, all of
which have irreversible
losses.
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Energy equation in terms of heads

g > ¥
X + - + 1 + "’l‘r]ﬁump. W X + ~ + &2 + hturhmt.{' + hL
F‘j ] Is'? '_.lg l‘r] :'ii” ._-":LIF
where
H’!pump. u I"'Vpumn u npumpwpump . )
Mump. u = = — - : is the useful head delivered
g mg mg
to the fluid by the pump. Because of irreversible losses in the pump,
hump, o 15 less than W0 o /mg by the factor m, .
Wiurbine. e H/lurhinc. e V turbine .
* Mubine.e = = : — — 1s the extracted head removed
8 mg Nrbine/ME

Jrom the fluid by the turbine. Because of irreversible losses in the
turbine, & 1s greater than W . /mg by the factor M pine-
€mech loss, piping Emcch loss, piping |

e iy = 0 = : 1s the 1rreversible head loss between
mg

| and 2 due to all components of the piping system other than the pump
or turbine.

turbine. e urbine
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P, Vi P, V3
+ T 20 T Npump, w = +

¥
Pg 28 P28 28

T :_“ T ’Ir'r[llt'luun:. T ’Ir'r!, (5'74)

Special Case: Incompressible Flow with No
Mechanical Work Devices and Negligible Friction

When piping losses are negligible, there is negligible dissipation of
mechanical energy into thermal energy, and thus h, = e

0. Also, h =h

~
—

mech loss, piping /g -
= 0 when there are no mechanical work

pump, u turbine, e
devices such as fans, pumps, or turbines. Then Eq. 5-74 reduces to
P, Vi P, V3 P Vv’
+—+7z;= + + 7 or + — + z = constant

pg  2g pg  2¢ pg  2g

This is the Bernoulli equation derived earlier using Newton’s
second law of motion.

Thus, the Bernoulli equation can be thought of as a degenerate
form of the energy equation.
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Kinetic Energy Correction Factor, o

The kinetic energy of a fluid stream obtained
from V?/2 is not the same as the actual kinetic
energy of the fluid stream since the square of
a sum is not equal to the sum of the squares
of its components.

This error can be corrected by replacing the
Kinetic energy terms V?/2 in the energy
equation by aV,, /12, where «ais the kinetic

energy correction factor.

The correction factor is 2.0 for
fully developed laminar pipe
flow, and it ranges between 1.04
and 1.11 for fully developed
turbulent flow in a round pipe.

3
I

(P, V , (P, V3
m(— + o, —+ 27, ) + Woumn = m( - Ty T
] puimj e y

P £ P Z
3 72 3 72
£ Vi £ Va |
+ « + 70 F N ) = + ¥, +
a | "3 | [II.]J'llj-. I O oy
Ps 28 P L8

m=pV_ A

avg

£ = constant
KE, = chéir}? = L‘l l— [‘Lf"{r_}l1 |pVir) dA

:+phmmﬂm
1 1
2 2

v T 73
MmVige= = pAV

KEact ] J ( Vi(r) )3 1A
a= ————— = — a
KEy, A M\ Vi

The determination of the kinetic energy correction
factor using the actual velocity distribution V(r) and
the average velocity V_,, at a cross section.

-

~ mech, loss

T {“_"') T H_.’[“[_h“w + £

2 + ’Ir'r1l.lt'|mlc.:' + ’Ir're'_ 40



y  EXAMPLE 5-13 Hydroelectric Power Generation from a Dam

: In a hydroelectric power plant, 100 m3/s of water flows from an elevation of
: "120mtoa turbine, where electric power is generated (Fig. 5-55). The total
s irreversible head loss in the piping system from point 1 to point 2 (excluding
s the turbine unit) is determined to be 35 m. If the overall efficiency of the
i turbine—generator is 80 percent, estimate the electric power output.

O

o 5
100 m3/s
\ 120 m hturhine,f — ":l o hL
hL =35m
Turbine @ . .
s Weler:tric — 1?tllrt}ill»e—g,fnaj"uHﬁturl:nine, e
Generator Wturhine,ﬁ‘ = mghturhine,f
nmrbine—gen = 80%
/ ' 2 / )
Py o, 0o P V O
_f’_+ﬂ’|__'f+a,]+hpuﬁ{gﬂ—+ _'_+5-/[ +hturhmef+hL
p8 28 P’g 23., 41



EXAMPLE 5-15 Head and Power Loss During Water Pumping

Water i1s pumped from a lower reservoir to a higher reservoir by a pump that
provides 20 kW of useful mechanical power to the water (Fig. 5-57). The
free surface of the upper reservoir is 45 m higher than the surface of the
lower reservoir. If the flow rate of water is measured to be 0.03 m?/s, deter-
mine the irreversible head loss of the system and the lost mechanical power
during this process.
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Example: Pumping Water from a Lake to a Reservoir

2 2
Energy . (T Vi ) (P V3
equation (P T 7 + g*’u]) + Wpump u m(ﬂ + ary D + 82,

between 1
and 2 + Wturh]ne,f + Emech loss, piping

Wpump, u — MEL + Emer:h loss, piping

E = mgh;

mech loss, piping

For the - - Wpump,u
pump AP = Pcmt o Pin — V
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Example

Gasoline at 20°C is pumped through a smooth 12-cm-diameter pipe 10 km long, at a 8w
rate of 75 m*/h (330 gal/min). The inlet is fed by a pump at an absolute pressure of 24 atm.
The exit is at standard atmospheric pressure and is 150 m higher. Estimate the frictional
head loss hy and compare it to the velocity head of the flow ‘»"‘Qﬂjﬁg]. (These numbers are
quite realistic for liquid flow through long pipelines.)
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Example

When the pump in Fig. P3.169 draws 220 m'/h of water at
20°C from the reservoir, the total friction head loss 15 3 m.
The flow discharges through a nozzle to the atmosphere.
Estimate the pump power in kW delivered to the water.

-

|||<]

— it

Water
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Example

5-76 A 7-hp (shaft) pump 15 used to raise water to a 15-m
higher elevation. If the mechanical efficiency of the pump i1s
82 percent, determine the maximum volume flow rate of
walter.
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