
Chapter 4: Transient Heat 
Conduction

Objectives
When you finish studying this chapter, you should be able to:
• Assess when the spatial variation of temperature is negligible, 

and temperature varies nearly uniformly with time, making the 
simplified lumped system analysis applicable,

• Obtain analytical solutions for transient one-dimensional 
conduction problems in rectangular, cylindrical, and spherical 
geometries using the method of separation of variables, and 
understand why a one-term solution is usually a reasonable 
approximation,

• Solve the transient conduction problem in large mediums using 
the similarity variable, and predict the variation of temperature 
with time and distance from the exposed surface, and

• Construct solutions for multi-dimensional transient conduction 
problems using the product solution approach.



Lumped System Analysis

• In heat transfer analysis, some bodies are essentially 
isothermal and can be treated as a “lump” system. 

• An energy balance of an isothermal solid for the time 
interval dt can be expressed as

hAs(T∞-T)dt=

Heat Transfer into 
the body
during dt

=
The increase in the
energy of the body

during dt

(4–1)mcpdT

m=mass
V=volume
=density
Ti=initial temperature

T=T(t)
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• Noting that m=V and dT=d(T-T∞) since T∞
constant, Eq. 4–1 can be rearranged as

• Integrating from time zero (at which T=Ti) to t gives

• Taking the exponential of both sides and rearranging

• b is a positive quantity whose dimension is (time)-1, 
and is called the time constant.
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There are several observations that can be made from this figure and 
the relation above:

1. Equation 4–4 enables us to determine the temperature T(t) of a 
body at time t, or alternatively, the time t required for the 
temperature to reach a specified value T(t).

2. The temperature of a body approaches the ambient temperature T
exponentially. 

3. The temperature of the body changes rapidly at the beginning, 
but rather slowly later on. 

4. A large value of b indicates that the body 

approaches the ambient temperature in a 

short time.

Rate of Convection Heat Transfer
• The rate of convection heat transfer between the body 

and the ambient can be determined from Newton’s 
law of cooling

• The total heat transfer between the body and the 
ambient over the time interval 0 to t is simply the 
change in the energy content of the body:

• The maximum heat transfer between the body and its 
surroundings (when the body reaches T∞)

 ( ) ( )     (W)sQ t hA T t T  (4–6)

 ( )     (kJ)pQ mc T t T  (4–7)

 max     (kJ)p iQ mc T T  (4–8)



Criteria for Lumped System 
Analysis

• Assuming lumped system is not always appropriate,

the first step in establishing a criterion for the 
applicability is to define a characteristic length

• and a Biot number (Bi) as

• It can also be expressed as 

c sL V A

chLBi k (4–9)
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Rcond

Conduction resistance within the body

Rconv

Convection resistance at the surface of the body

• Lumped system analysis assumes a uniform 
temperature distribution throughout the body, which is 
true only when the thermal resistance of the body to 
heat conduction is zero.

• The smaller the Bi number, the more accurate the 
lumped system analysis.

• It is generally accepted that lumped system analysis is 
applicable if

0.1Bi 



Transient Heat Conduction in Large 
Plane Walls, Long Cylinders, and 

Spheres with Spatial Effects
• In many transient heat transfer problems the Biot number 

is larger than 0.1, and lumped system can not be assumed. 

• In these cases the temperature within the body changes 
appreciably from point to point as well as with time.

• It is constructive to first consider the variation of 
temperature with time and position in one-dimensional 
problems of rudimentary configurations such as a large 
plane wall, a long cylinder, 

and a sphere.

A large Plane Wall

• A plane wall of thickness 2L.
• Initially at a uniform temperature of Ti.
• At time t=0, the wall is immersed in a 

fluid at temperature T∞.
• Constant heat transfer coefficient h.
• The height and the width of the wall are large relative to 

its thickness one-dimensional approximation is valid.
• Constant thermophysical properties.
• No heat generation.
• There is thermal symmetry about the midplane passing 

through x=0.



The Heat Conduction Equation

• One-dimensional transient heat conduction equation 
problem (0≤ x ≤ L):

(4–10a)
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Boundary conditions:

(4–10c) ,0 iT x TInitial condition:

Nondimensional Equation
• A dimensionless space variable 

X=x/L

• A dimensionless temperature variable

(x, t)=[T(x,t)-T∞]/[Ti-T∞]

• The dimensionless time and h/k ratio will be obtained through the 
analysis given below

• Introducing the dimensionless variable into Eq. 4-10a

• Substituting into Eqs. 4–10a and 4–10b and rearranging
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• Therefore, the dimensionless time is =t/L2, which 
is called the Fourier number (Fo).

• hL/k is the Biot number (Bi).

• The one-dimensional transient heat conduction 
problem in a plane wall can be expressed in 
nondimensional form as

(4–12a)
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Boundary conditions:

(4–12c) ,0 1X Initial condition:

Exact Solution
• Several analytical and numerical techniques can be 

used to solve Eq. 4-12.

• We will use the method of separation of variables.

• The dimensionless temperature function (X,) is 
expressed as a product of a function of X only and a 
function of  only as

• Substituting Eq. 4–14 into Eq. 4–12a and dividing by 
the product FG gives

     ,X F X G   (4–14)
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• Since X and  can be varied independently, the 
equality in Eq. 4–15 can hold for any value of X and 
only if Eq. 4–15 is equal to a constant.

• It must be a negative constant that we will indicate by 
-2 since a positive constant will cause the function 
G() to increase indefinitely with time.

• Setting Eq. 4–15 equal to -2 gives

• whose general solutions are
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• where A=C1C3 and B=C2C3 are arbitrary constants. 

• Note that we need to determine only A and B to 
obtain the solution of the problem.

• Applying the boundary conditions in Eq. 4–12b gives
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• But tangent is a periodic function with a period of , and the equation 
tan(=Bi has the root 1 between 0 and , the root 2 between  and 
2, the root n between (n-1) and n, etc.

• To recognize that the transcendental equation tan(=Bi has an 
infinite number of roots, it is expressed as

• Eq. 4–19 is called the characteristic equation or eigenfunction, and 
its roots are called the characteristic values or eigenvalues.

• It follows that there are an infinite number of solutions of the form        
, and the solution of this linear heat conduction 

problem is a linear combination of them,

• The constants An are determined from the initial condition, Eq. 4–12c,

tann n Bi   (4–19)
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• Multiply both sides of Eq. 4–21 by cos(mX), and 
integrating from X=0 to X=1

• The right-hand side involves an infinite number of 
integrals of the form

• It can be shown that all of these integrals vanish except 
when n=m, and the coefficient An becomes
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• Substituting Eq. 4-22 into Eq. 20a gives

• Where n is obtained from Eq. 4-19.
• As demonstrated in Fig. 4–14, the

terms in the summation decline 
rapidly as n and thus n increases.

• Solutions in other geometries such 
as a long cylinder and a sphere can 
be determined using the same 
approach and are given in Table 4-1.
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FIGURE 4-14

Summary of the Solutions for One-
Dimensional Transient Conduction



Approximate Analytical and 
Graphical Solutions

• The series solutions of Eq. 4-20 and in Table 4–1 converge 
rapidly with increasing time, and for >0.2, keeping the first 
term and neglecting all the remaining terms in the series results 
in an error under 2 percent.

• Thus for >0.2 the one-term approximation can be used
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• The constants A1 and 1 are functions of the Bi number 
only, and their values are listed in Table 4–2 against the Bi
number for all three geometries.

• The function J0 is the zeroth-order Bessel function of the 
first kind, whose value can be determined from Table 4–3.



Center of plane wall (x=0):
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The solution at the center of a plane wall, cylinder, 
and sphere:

Heisler Charts
• The solution of the transient temperature for a large 

plane wall, long cylinder, and sphere are also 
presented in graphical form for >0.2, known as the 
transient temperature charts (also known as the 
Heisler Charts).

• There are three charts associated with each geometry: 

– the temperature T0 at the center of the geometry at a 
given time t.

– the temperature at other locations at the same time 
in terms of T0.

– the total amount of heat transfer up to the time t. 



Heisler Charts – Plane Wall

Midplane temperature

Heisler Charts – Plane Wall

Temperature
distribution

Heat Transfer



Heisler Charts – Cylinder

Midplane temperature

Heisler Charts – Cylinder

Temperature
distribution

Heat Transfer



Heisler Charts – Sphere

Midplane temperature

Heisler Charts – Sphere

Temperature
distribution

Heat Transfer



Heat Transfer

• The maximum amount of heat that a body can gain (or 
lose if Ti=T∞) occurs when the temperature of the body 
is changes from the initial temperature Ti to the 
ambient temperature

• The amount of heat transfer Q at a finite time t is can 
be expressed as

   max     (kJ)p i p iQ mc T T Vc T T     (4–30)
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• Assuming constant properties, the ratio of Q/Qmax

becomes

• The following relations for the fraction of heat transfer 
in those geometries:
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Remember, the Heisler charts are 
not generally applicable

The Heisler Charts can only be used when:

• the body is initially at a uniform temperature,

• the temperature of the medium surrounding 
the body is constant and uniform.

• the convection heat transfer coefficient is 
constant and uniform, and there is no heat 
generation in the body.

Fourier number

• The Fourier number is a measure of heat conducted
through a body relative to heat stored.

• A large value of the Fourier number indicates faster 
propagation of heat through a body.
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Transient Heat Conduction in Semi-
Infinite Solids

• A semi-infinite solid is an idealized 
body that has a single plane surface 
and extends to infinity in all 
directions.

• Assumptions:
– constant thermophysical properties
– no internal heat generation
– uniform thermal conditions on its exposed surface
– initially a uniform temperature of Ti throughout.

• Heat transfer in this case occurs only in the direction 
normal to the surface (the x direction)

one-dimensional problem.

• Eq. 4–10a for one-dimensional transient conduction in 
Cartesian coordinates applies

• The separation of variables technique does not work 
in this case since the medium is infinite.

• The partial differential equation can be converted into
an ordinary differential equation by combining the 
two independent variables x and t into a single 
variable , called the similarity variable.
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Similarity Solution
• For transient conduction in a semi-infinite medium

• Assuming T=T() (to be verified) and using the chain 
rule, all derivatives in the heat conduction equation 
can be transformed into the new variable
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• Noting that =0 at x=0 and →∞ as x→∞ (and also at 
t=0) and substituting into Eqs. 4–37b (BC) give, after 
simplification

• Note that the second boundary condition and the initial 
condition result in the same boundary condition.

• Both the transformed equation and the boundary 
conditions depend on  only and are independent of x
and t. Therefore, transformation is successful, and  is 
indeed a similarity variable.
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• To solve the 2nd order ordinary differential equation in Eqs. 4–
39, we define a new variable w as w=dT/d. This reduces Eq. 4–
39a into a first order differential equation than can be solved by 
separating variables,

• where C1=ln(C0). 

• Back substituting w=dT/d and integrating again,

• where u is a dummy integration variable. The boundary 
condition at 0 gives C2=Ts, and the one for →∞ gives
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• Substituting the C1 and C2 expressions into Eq. 4–40 
and rearranging,

• Where
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and the complementary error 

function, respectively, of 

argument .
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• Knowing the temperature distribution, the heat flux at 
the surface can be determined from the Fourier’s law 
to be
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COMPLEMENTARY ERROR FUNCTION



Other Boundary Conditions
• The solutions in Eqs. 4–42 and 4–44 correspond to 

the case when the temperature of the exposed surface 
of the medium is suddenly raised (or lowered) to Ts at 
t=0 and is maintained at that value at all times.

• Analytical solutions can be obtained for other 
boundary conditions on the surface and are 
given in the book
– Specified Surface Temperature, Ts = constant.
– Constant and specified surface heat flux.
– Convection on the Surface,
– Energy Pulse at Surface.

Convection on the Surface



Transient Heat Conduction in Semi-
Infinite Solids

Transient Heat Conduction in 
Multidimensional Systems

• Using a superposition approach called the 
product solution, the one-dimensional heat 
conduction solutions can also be used to 
construct solutions for some two-dimensional 
(and even three-dimensional) transient heat 
conduction problems. 

• Provided that all surfaces of the solid are 
subjected to convection to the same fluid at 
temperature, the same heat transfer coefficient 
h, and the body involves no heat generation.



Example ─ short cylinder

• Height a and radius ro.

• Initially uniform temperature Ti.

• No heat generation

• At time t=0:
– convection T∞
– heat transfer coefficient h

• The solution:

     
Short plane infinite
Cylinder wall cylinder

, , , ,
 X 

i i i

T r x t T T x t T T r t T

T T T T T T
  

  

       
            

(4–50)

• The solution can be generalized as follows: the 
solution for a multidimensional geometry is the 
product of the solutions of the one-dimensional 
geometries whose intersection is the multidimensional 
body.

• For convenience, the one-dimensional solutions are 
denoted by

   

   

   

wall
plane
wall

cyl
infinite
cylinder

semi-inf
semi-infinite
solid

,
,

,
,

,
,

i

i

i

T x t T
x t

T T

T r t T
r t

T T

T x t T
x t

T T



















 
   

 
   

 
   

(4–51)



Total Transient Heat Transfer
• The transient heat transfer for a two dimensional geometry 

formed by the intersection of two one-dimensional 
geometries 1 and 2 is:

• Transient heat transfer for a three-dimensional (intersection 
of three one-dimensional bodies 1, 2, and 3) is:

max max max max, 2 1 2 1

1-
total D

Q Q Q Q

Q Q Q Q

        
          

         
(4–53)

max max max max, 3 1 2 1

max max max3 1 2

1-

                      1- 1-

total D

Q Q Q Q

Q Q Q Q

Q Q Q

Q Q Q

        
          

         
        

         
           

(4–54)


