Chapter 4: Transient Heat
Conduction

Objectives
When you finish studying this chapter, you should be able to:

» Assess when the spatial variation of temperature is negligible,
and temperature varies nearly uniformly with time, making the
simplified lumped system analysis applicable,

» Obtain analytical solutions for transient one-dimensional
conduction problems in rectangular, cylindrical, and spherical
geometries using the method of separation of variables, and
understand why a one-term solution is usually a reasonable
approximation,

* Solve the transient conduction problem in large mediums using
the similarity variable, and predict the variation of temperature
with time and distance from the exposed surface, and

* Construct solutions for multi-dimensional transient conduction
problems using the product solution approach.




Lumped System Analysis

 In heat transfer analysis, some bodies are essentially
1sothermal and can be treated as a “lump” system.

* An energy balance of an 1sothermal solid for the time
interval df can be expressed as

SOLID BODY
Heat Transfer into The increase in the m=mass
b V=volume
the .body — | energy o.f the body —density
durlng dt dlll'lllg dt T=initial temperature
\ / - T=T(»
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hAS(Y:OO—DdthCp'dT (4-1)

Noting that m=pl and d7=d(T-T ) since T,
constant, Eq. 4-1 can be rearranged as
d(T-T,) hd

=——dt (4-2)
T-T, pre,

Integrating from time zero (at which 7=T) to 7 gives

n T()-T, _ hA, ) (4-3)

L-T, pie,
» Taking the exponential of both sides and rearranging
— A
-1, =e” ; b=—— (1/s) @44
I -T, pre,

b is a positive quantity whose dimension is (time)-!,
and is called the time constant.




There are several observations that can be made from this figure and
the relation above:

1. Equation 44 enables us to determine the temperature 7(¢) of a
body at time 7, or alternatively, the time ¢ required for the
temperature to reach a specified value 7(7).

2. The temperature of a body approaches the ambient temperature 7
exponentially.

3. The temperature of the body changes rapidly at the beginning,
but rather slowly later on. Tin4

4. A large value of b indicates that the body

approaches the ambient temperature in a

short time.

Rate of Convection Heat Transfer

» The rate of convection heat transfer between the body
and the ambient can be determined from Newton’s
law of cooling

O)=hA[T()-T,] (W)  (4-6)

» The total heat transfer between the body and the
ambient over the time interval 0 to 7 is simply the
change in the energy content of the body:

Q=mc, [T(t) —TOO] (kJ) (4-7)
» The maximum heat transfer between the body and its
surroundings (when the body reaches 7))

O =mc, [T-T,] (KJ) 49




Criteria for Lumped System
Analysis

» Assuming lumped system is not always appropriate,
the first step in establishing a criterion for the
applicability is to define a characteristic length

L =V/A
: : . _hL
» and a Biot number (Bi) as Bi=""¢ (49
It can also be expressed as

L
C
Bl . k . Rcon d Conduction resistance within the body
1 R Convection resistance at the surface of the body
h conv 1

» Lumped system analysis assumes a uniform
temperature distribution throughout the body, which is
true only when the thermal resistance of the body to
heat conduction 1s zero.

e The smaller the Bi number, the more accurate the
lumped system analysis.

« It 1s generally accepted that lumped system analysis is
applicable 1f

Bi<0.1




Transient Heat Conduction in Large
Plane Walls, Long Cylinders, and
Spheres with Spatial Effects

* In many transient heat transfer problems the Biot number
is larger than 0.1, and lumped system can not be assumed.

 In these cases the temperature within the body changes
appreciably from point to point as well as with time.

* It is constructive to first consider the variation of
temperature with time and position in one-dimensional
problems of rudimentary configurations such as a large
plane wall, a long cylinder,

and a sphere. ] T g 3 \ o -\
IEnEEL a4
Wi 4N ]

A large Plane Wall

* A plane wall of thickness 2L. ™ I -

* Initially at a uniform temperature of 7.

o At time =0, the wall is immersed in a | L x

fluid at temperature 7,

 Constant heat transfer coefficient /. i

» The height and the width of the wall are large relative to
its thickness = one-dimensional approximation is valid.

» Constant thermophysical properties.
» No heat generation.

* There 1s thermal symmetry about the midplane passing
through x=0.




The Heat Conduction Equation

* One-dimensional transient heat conduction equation
problem (0<x < L):

2
Differential equation: g ]g _ Lo (4-10a)
ox° «a ot
7
or (0,z) 0
Boundary conditions: (ZCT . (4-10b)
< oI ’t)zh[T(L,t)—Tm]
ox
Initial condition: T(x,0)=T, (4-10c)

Nondimensional Equation

A dimensionless space variable
X=x/L
A dimensionless temperature variable
ax, ty=ITcH-T, VT T,

The dimensionless time and //k ratio will be obtained through the
analysis given below

Introducing the dimensionless variable into Eq. 4-10a

o0 00 L oT o0 L' 0T 06 1 or
oX o(x/L) T-T,ox oX* T-T,08 o T-T, ot

Substituting into Eqs. 4—10a and 4—105 and rearranging

2 2 2
0 (92 =L_a fae : 50(1’t)=hl’ 0(1,1‘) : M:O (4-11)
oX>  a ox* ot oX k oX




» Therefore, the dimensionless time is 7=o.#/L?, which
is called the Fourier number (Fo).

* hL/kis the Biot number (Bi).

 The one-dimensional transient heat conduction
problem in a plane wall can be expressed in
nondimensional form as

: : : 0’0 06
Differential equation: = 4-12a
1 1 oX* Or ( )
(00(0,7)
Boundary conditions: 4 898)1( =2
{ M:_Bie(l,f)
L oX
Initial condition: 0(X,0)=1 (4-12¢)

Exact Solution

« Several analytical and numerical techniques can be
used to solve Eq. 4-12.

* We will use the method of separation of variables.

» The dimensionless temperature function A X, 7) 1s
expressed as a product of a function of X only and a
function of 7 only as

0(X,7)=F(X)G(r) (4-14)
» Substituting Eq. 4-14 into Eq. 4—12a and dividing by
the product /G gives
1 d*°F 1dG
FdX* Gdr

(4-15)




» Since X and 7 can be varied independently, the
equality in Eq. 4-15 can hold for any value of X and 7
only if Eq. 4-15 1s equal to a constant.

[t must be a negative constant that we will indicate by
- A7 since a positive constant will cause the function
(7(7) to increase indefinitely with time.

 Setting Eq. 4-15 equal to -4> gives

d*F dG

+A’F=0 ; —+A’°F=0 (4-16)
2 dr

» whose general solutions are

{F =C, cos(AX)+C,sin(AX)

> 4-17
G=C,e " R

0=FG=Ce”*[C cos(AX)+C,sin(AX)]

— AT [A COS (ZX) + Bsin (ﬂX)] (4-18)

* where A=C,C; and B=C,(; are arbitrary constants.

* Note that we need to determine only 4 and B to
obtain the solution of the problem.

* Applying the boundary conditions in Eq. 4—12b gives
89(0, r)

—0— —e*" (AAsin0+BAcos0)=0
oX

SB=0—>60=Ade"" cos(AX)

898()1(77) =-Bif(l,7) > —Ae**Asin A =—Bide " cos A

i —> Atan A = Bi




But tangent is a periodic function with a period of 7, and the equation
Atan(A)=B1 has the root A, between 0 and 7, the root 4, between 7 and
21, the root 4, between (n-1)7 and nr, etc.

To recognize that the transcendental equation Atan(4)=Bi has an
infinite number of roots, it is expressed as

A tan A = Bi (4-19)
Eq. 4-19 is called the characteristic equation or eigenfunction, and
its roots are called the characteristic values or eigenvalues.

It follows that there are an infinite number of solutions of the form
0= Ae* " cos(AX), and the solution of this linear heat conduction
problem is a linear combination of them,

* 2
6 = Z A4, e " cos (Z,HX ) (4-20)
The constants 4, are determined from the 1nitial condition, Eq. 4-12c,

Q(X,O):lalzi/ln cos(4,X)  (4-21)

« Multiply both sides of Eq. 4-21 by cos(A, X), and
integrating from X=0 to X=1
.[: cos(4,X)= f cos(/lmX)i A, cos(4,X)
* The right—he_md side involves an infinite number of

integrals of the form

j cos(4,X)cos(4,X)dX
X=0
[t can be shown that all of these integrals vanish except

when n=m, and the coefficient 4, becomes
X=1 X=I1

j cos(A,X)dX =4, I cos’ (4,X)dX

X=0 X=0




» Substituting Eq. 4-22 into Eq. 20a gives

* Where 4, is obtained from Eq. 4-19. 6= e uir
 As demonstrated in Fig. 4-14, the e Tw
terms in the summation decline s

rapidly as » and thus A increases.

ForBi=5.X=l.and r=0.2:

—“rr Au ”n

1.3138 1.2402 0.22321

 Solutions in other geometries such

4.0336 —0.3442 0.00835

1
as a long cylinder and a sphere can s ot OoE G0
be determined using the same !
approach and are given in Table 4-1. FIGURE 4-14

0.8928 —0.876 0.00000

Summary of the Solutions for One-
Dimensional Transient Conduction

TABLE 4-1
Summary of the solutions for one-dimensional transient conduction in a plane wall of
thickness 2L, a cylinder of radius r, and a sphere of radius r, subjected to convention from
all surfaces.”
Geometry Solution A,'s are the roots of
PI I o St il bl tan A, = Bi
ane wa 0= ——F————¢€ " cos(Ax/ Amtan A, = Bi
Z2M, + Sin(2A,) X : '
A S ¥ . T T
. o — = : = — J‘; 'Aq) .
Cylinder 0= DA, 2(\,) + 2 (M) € Jo (A, rir,) N Ty ™ Bi
n=1 0 n
s = A(sin A, — A, COS A,) -2 SINA,X/L) | . . o
o= Sk MG pg e MIUATR) | — A, cot A, = Bi
Sphere awl 2A,, — sin( 2"\.'1) A= X /L
*Here i = (T — TM(T, — T) is the dimensionless temperature, Bi = hL/k or hr, /k is the Biot number, Fo = 7 = ar/ L?

or a7/ rZ is the Fourier number, and J, and J, are the Bessel functions of the first kind whose values are given in
Table4-3. = TE T TS T TTT TS TS TS S T TS ST ST e et




Approximate Analytical and
Graphical Solutions

» The series solutions of Eq. 4-20 and in Table 4-1 converge
rapidly with increasing time, and for 7>0.2, keeping the first
term and neglecting all the remaining terms in the series results
in an error under 2 percent.

» Thus for 7>0.2 the one-term approximation can be used

Plane wall: 0, , = Txn-1, Ae ¥ cos(Ax/L), 7>0.2 (4-23)
Cylinder: 6, - % = A, (i), T>02  (4-24)

1 o0

Sphere: g, =T "L _y i in(Ar/h) oo (4-25)
T-T Arlr

1 o0

» The constants 4, and A, are functions of the Bi number
only, and their values are listed in Table 4-2 against the Bi
number for all three geometries.

 The function J|, 1s the zeroth-order Bessel function of the
first kind, whose value can be determined from Table 4-3.

TABLE 4-2 TABLE 4-3




The solution at the center of a plane wall, cylinder,
and sphere:

T,-T >
Center of plane wall (x=0): 6, ., = ﬁ =A.e"7  (4-26)
C < — ° ]-(') - Too —/IZT
enter of cylinder (r=0). go,cyl — T =A,.e " (427)
C — ° 7-2) _ TOO _121
enter of sphere (r=0). 6., = T Ae™” (4-28)

Heisler Charts

» The solution of the transient temperature for a large
plane wall, long cylinder, and sphere are also
presented in graphical form for 7>0.2, known as the
transient temperature charts (also known as the
Heisler Charts).

» There are three charts associated with each geometry:

— the temperature 7, at the center of the geometry at a
given time 7.

— the temperature at other locations at the same time
in terms of 7.

— the total amount of /ieat transfer up to the time 7.




isler Charts — Plane Wall
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Heat Transfer

Temperature
ibution
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Heat Transfer

» The maximum amount of heat that a body can gain (or
lose if 7,=T,)) occurs when the temperature of the body
1s changes from the initial temperature 7’ to the
ambient temperature

Opex =mc, (T, -T)=pVc,(T,-T) (k)  (4-30)

* The amount of heat transfer O at a finite time 7 is can
be expressed as

Q:jpcp | T(x,t)-T, |dV (4-31)

» Assuming constant properties, the ratio of O/0
becomes
1

jpcp [T(x,t)-]ﬂdV
O v :—_[(I—V)dV (4-32)
Qmax IOCp(Too_]:')V VV
» The following relations for the fraction of heat transfer
in those geometries:

max

Plane wall: [QQ j == 51121 (4-33)
max. /all
Cylinder: [ 0 ] 129, DA (4-34)
o Qmax y 0,cyl /11

Sphere: [ 0 ] _1_3g Sin4 _/11’11 cosd  (4-35)




Remember, the Heisler charts are
not generally applicable

The Heisler Charts can only be used when:
 the body 1s initially at a uniform temperature,

 the temperature of the medium surrounding
the body 1s constant and uniform.

 the convection heat transfer coefficient is
constant and uniform, and there 1s no heat
generation in the body.

Fourier number

ot 3 kL2 (1 / L) AT - [The rate at which heat is conducted]

across L of a body of volume L3

L2 o ,0ch3 /t AT _ [ The rate at which heat is storedJ

in a body of volume L3

T =

 The Fourier number is a measure of heat conducted
through a body relative to /ieat stored.

A large value of the Fourier number indicates faster
propagation of heat through a body.




Transient Heat Conduction in Semi-
Infinite Solids

A semi-infinite solid is an idealized
body that has a single plane surface

and extends to infinity in all

Plane
surface

directions.

* Assumptions: h
— constant thermophysical properties
— no internal heat generation
— uniform thermal conditions on its exposed surface
— initially a uniform temperature of 7’ throughout.

» Heat transfer in this case occurs only in the direction
normal to the surface (the x direction)

> one-dimensional problem.

* Eq. 4-10a for one-dimensional transient conduction in
Cartesian coordinates applies

2
Differential equation: o 1er (4-10a)
ox>  a ot
T(0,¢)=T.
§ - 1) =1, 4-37b
Boundary conditions: {T (5= 0,1) =T ( )
<
Initial condition: T(x,0)=T, (4-10c)

N
» The separation of variables technique does not work

1n this case since the medium is infinite.

» The partial differential equation can be converted into
an ordinary differential equation by combining the
two independent variables x and 7 into a single
variable 7, called the similarity variable.




Similarity Solution

* For transient conduction in a semi-infinite medium
X

Similarity variable: 1= N
(04

» Assuming 7=7(7) (to be verified) and using the chain
rule, all derivatives in the heat conduction equation
can be transformed into the new variable

(4-39a)

PT_10T . //‘\ %
-‘.'1 dt \) -I-( ______ L
I
f_T ﬂﬁ l, X (!'T\\ I 82]4\\ I%T \ | azT GT .
ar  dn at \J\ “Aat dn Y] —277_ :
oT _dTon I dT /l‘ ox’ ;- axﬁt / 877 on |

r;l_\' dn ax \/ 4(” .rh} /ﬂ
T _d (:'H) an 4’ I d’ f\
ot dn\ax/) ax \dat rh‘;/

~ -

T __, oT

o~ gy (4-39a)

* Noting that 77=0 at x=0 and 77—o0 as x—o0 (and also at
t=0) and substituting into Eqgs. 4-37b (BC) give, after

simplification

T(0)=T, ; T(n—>x)=T,  (4-39D)

* Note that the second boundary condition and the initial
condition result in the same boundary condition.

* Both the transformed equation and the boundary
conditions depend on 77 only and are independent of x
and 7. Therefore, transformation is successful, and 77 1s
indeed a similarity variable.




» To solve the 2nd order ordinary differential equation in Egs. 4—
39, we define a new variable w as w=d7/dn. This reduces Eq. 4—
39a into a first order differential equation than can be solved by
separating variables,

d d
P opw— = 2pan — In(w)=-n"+C,
dn w
Ce™
« where C=In(C,). —w=Le

» Back substituting w=d7/dn and integrating again,
n
T= Clje_” du+C, (4-40)

» where u 1s a dummy integration variable. The boundary
condition at 7=0 gives C,=T7, and the one for 7—co gives
JZ T=7

n=cferaunc,=¢, Y1 5 :¥ (4-41)
T

 Substituting the C, and C, expressions into Eq. 440
and rearranging,

T-T o
T \/_J‘ du = erf (1) =1-erfc(n) (4-42)

* Where
erf (1 \/7'[ e du erfe(n)=1 TI e du (4-43)

0 10—y T T T
« are called the error function M / [ "] '+
and the complementary error  Z,.[ I —
- /\v erf(n) :J--E-J e~ du

function, respectively, of

Error function erf (%)
N
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» Knowing the temperature distribution, the heat flux at

the surface can be determined from the Fourier’s law

to be
2 k(T —T.
i<k _goronl _ 4o 1| _KE-T)
ox |, on ox| dat |, ot
(4-44)

COMPLEMENTARY ERROR FUNCTION

The complementary error function

n erfc (n) n erfc () n erfc (x) n erfc (n) 7 erfc (n) n erfc (n)
0.00 1.00000 | 0.38 0.5910 | 0.76 0.2825 1.14 0.1069 152 0.03159 1.90 0.00721
0.02 0.9774 0.40 0.5716 | 0.78 0.2700 | 1.16 0.10090 | 1.54 0.02941 1.92 0.00662
0.04 0.9549 0.42 0.5525 | 0.80 0.2579 1.18 0.09516 1.56 0.02737 1.94  0.00608
0.06 0.9324 0.44 0.5338 | 0.82 0.2462 | 1.20 0.08969 | 1.58 0.02545 | 1.96 0.00557
0.08 0.9099 0.46 0.5153 | 0.84 0.2349 1.22 0.08447 1.60 0.02365 1.98 0.00511
0.10 0.8875 0.48 0.4973 | 0.86 0.2239 | 1.24 0.07950 | 1.62 0.02196 | 2.00 0.00468
0.12 0.8652 0.50 0.4795 | 0.88 0.2133 1.26  0.07476 1.64 0.02038 | 2.10 0.00298
0.14 0.8431 0.52 0.4621 | 0.90 0.2031 1.28 0.07027 | 1.66 0.01890 | 2.20 0.00186
0.16 0.8210 0.54 0.4451 0.92 0.1932 1.30 0.06599 1.68 0.01751 230 0.00114
0.18 0.7991 0.56 0.4284 | 0.94 0.1837 | 1.32 0.06194 | 1.70 0.01612 | 2.40 0.00069
0.20 0.7773 0.58 0.4121 0.96 0.1746 1.34 0.05809 1.72 0.01500 | 2.50 0.00041
0.22 0.7557 060 0.3961 | 0.98 0.1658 | 1.36 0.05444 | 1.74 0.01387 | 2.60 0.00024
0.24 0.7343 0.62 0.3806 1.00 0.1573 1.38 0.05098 1.76 0.01281 2.70 0.00013
0.26 0.7131 0.64 03654 | 1.02 0.1492 | 1.40 0.04772 | 1.78 0.01183 | 2.80 0.00008
0.28 0.8921 0.e6 0.3506 1.04 0.1413 1.42 0.04462 1.80 0.01091 2.90 0.00004
0.30 0.6714 0.68 03362 | 1.06 0.1339 | 1.44 0.04170 | 1.82 0.01006 | 3.00 0.00002
0.32 0.6509 0.70 0.3222 1.08 0.1267 1.46 0.03895 1.84 0.00926 | 3.20 0.00001
0.34 0.6306 0.72 03086 | 1.10 0.1198 | 1.48 0.03635 | 1.86 0.00853 | 3.40 0.00000
0.36  0.6107 0.74 0.2953 112 01132 1.50 0.03390 1.88 0.00784 | 3.60 0.00000




Other Boundary Conditions

* The solutions in Egs. 4—42 and 4—44 correspond to
the case when the temperature of the exposed surface
of the medium is suddenly raised (or lowered) to 7' at
=0 and is maintained at that value at all times.

 Analytical solutions can be obtained for other
boundary conditions on the surface and are
given in the book
— Specified Surface Temperature, T, = constant.
— Constant and specified surface heat flux.
— Convection on the Surface,
— Energy Pulse at Surface.

Convection on the Surface
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FIGURE 4-29
Variation of temperature with position and time in a semi-infinite solid initially at temperature T; subjected to
convection Lo an environment at T, with a convection heat transfer coefficient of h (plotied using EES).




Transient Heat Conduction in Semi-
Infinite Solids
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FIGURE 4-28
Variations of temperature with position and time in a large cast iron block (e = 2.31 X 1077 m/s,
k = 80.2 W/m °C) initially at 0 °C under different thermal conditions on the surface.

Transient Heat Conduction in
Multidimensional Systems

» Using a superposition approach called the
product solution, the one-dimensional heat
conduction solutions can also be used to
construct solutions for some two-dimensional
(and even three-dimensional) transient heat

conduction problems.

» Provided that a/l surfaces of the solid are
subjected to convection to the same fluid at
temperature, the same heat transfer coefficient
h, and the body involves no heat generation.

Heat

T(r.t) )
1 transfer

(a) Long eylinder

. = 1_"'“\
]
Heat

Tir.x8) transfer

(B) Short eylinder (two-dimensional )




Example — short cylinder

Height a and radius 7,

Initially uniform temperature 7.

» No heat generation z - Plane wall
_ e e e
e At time 7=0: -
— convection 7 i | |
— heat transfer coefficient / T S
« The solution: /,// ok
/_/_/ _________ \l. _ cylinder
(T(r,x,t)—ij _E(T(x,t)—TwJ EXE(T(VJ)_TOOJ 5(4—50)
7; -T © Short _: 7: -T © plane: : ]; -T w© infinite :
Cylinder | wall I | cylinder |

» The solution can be generalized as follows: t/e
solution for a multidimensional geometry is the
product of the solutions of the one-dimensional
geometries whose intersection is the multidimensional

body.
* For convenience, the one-dimensional solutions are
denoted by )_(T(x,t)—T J

o]

T -1

1 0

plane
wall

T(r,t)-T,
N (@s1)
j infinite

cylinder

o (n1)= (T(x,t) -~ ]‘
) semi-infinite

solid




TABLE 4-5 I
Multidimensional solutions expressed as products of one-dimensional solutions for badies that are initially at a
uniform temperature T, and exposed to convection from all surfaces to a medium at 7,
| | i
‘ rL
0
‘ P ) 7|
‘ L |
| S —t
e T
Bini) =8 (r 0 B (2.0, 0) = 8 (1.1) By e (X, 1) 1=00,(n 08y (x1)
Infinite eylinder i nder hort cylinder

Total Transient Heat Transfer

» The transient heat transfer for a two dimensional geometry
formed by the intersection of two one-dimensional
geometries 1 and 2 is:

(gj :(gj +[gj 1{@} e
O 20\ Crax i\ O )|\ Qs ),

» Transient heat transfer for a three-dimensional (intersection
of three one-dimensional bodies 1, 2, and 3) is:

Qmax total, 3D Qmax 1 Qmax 2 Qmax 1
Qmax 3 Qmax 1 Qmax 2




