Objectives

1. Have a deeper understanding of laminar and turbulent

flow in pipes and the analysis of fully developed flow

Chapter 8: Flow in Pipes

2. Calculate the major and minor losses associated with

pipe flow in piping networks and determine the
purnping power requirements
3. Understand the different velocity and flow rate

measurement techniques and learn their advantages

and disadvantages
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Introduction Introduction
® Average velocity in a pipe ® For pipes of constant
® Recall - because of the no-slip condition, the diameter and

velocity at the walls of a pipe or duct flow is . .
incompressible flow
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1 ® We are often interested only in Vo which we =S oV, g stays the same down the
usually call just V (drop the subscript for \ pipe, even if the Velocity

! A i .

] i convenience) — profile changes

! ¢ Keep in mind that the no-slip condition causes — .

;/—b/ o ) Vavg Vavg Why? Conservation of Mass
shear stress and friction along the pipe walls
Friction force of wall on fluid m = pVaugA = constant

same \ same
same




Introduction

* For pipes with variable diameter, m is still the same due to

conservation of mass, but V, #V,

D,
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Laminar Flow
Can be steady or unsteady

(Steady means that the flow field at any
instant in time is the same as at any other
instant in time.)

Can be one-, two-, or three-dimensional.

Ias regular, prediciable behavior

Dye trace

f Diye injfection

Analytical solutions are possible (see
Chapter 9).

k Occeurs at fow Reynolds numbers.

Laminar and Turbulent Flows

Turbulent Flow
Is always wnsteady.

Why? There are always random, swirling
motions {vortices or eddies) in a turbulent
flow.

Note: However, a turbulent flow can be
steady in the mean. We call this a
stationary iurbulent flow.

Is always three-dimensional.

Why? Again because of the random
swirling eddies, which are in all directions.

Nore: However, a turbulent flow can be 1-
D or 2-D in the mean.

Has irregular or chaotic behavior (cannot
predict exactly — there is some randomness
associated with any turbulent flow.

f Dwve injection

Mo analytical solutions exist! (It is too
complicated, again because of the 3-D,
unsteady, chaotic swirling eddies.)

Occurs at Aigh Reynolds numbers.

Laminar and Turbulent Flows

Critical Reynolds number (Re_,) for
flow in a round pipe
Re < 2300 = laminar

Definition of Reynolds number

2300 < Re <4000 = transitional
Re > 4000 = turbulent

Vave ® Note that these values are approximate.
—_— fL
oV ® For a given application, Re,, depends upon

® Pipe roughness
e Vibrations

¢ Upstream fluctuations, disturbances
(valves, elbows, etc. that may disturb the

flow)

_ dmDU)

D= =D

Square duci: a

Rectangular duct:  ||€

" 2Aa+bh) a+b

a ® Example: open channel

4a?

Dy=3-=a 4,=0.15%0.4 = 0.06m’
P=0.15+0.15+04=0.7m

Don’t count free surface, since it does not contribute to
b friction along pipe walls!

dab 2ab D, =44 /P=4%0.06/0.7=0.34m

Laminar and Turbulent Flows

® For non-round pipes, define the hydraulic
diameter
Circular tube: Dh =44 /P
c
AC = cross-section area

b =) P = wetted perimeter

What does it mean? This channel flow is equivalent to a
round pipe of diameter 0.34 m (approximately).
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The Entrance Region

* Consider a round pipe of diameter D. The flow can be
laminar or turbulent. In either case, the profile develops
downstream over several diameters called the entry length L, .
L,/D is a function of Re.

Irrotational (core) Velocity boundary Developing velocity Fully developed
flow region layer profile velocity profile
Vivg sy, Yo Vs Vivg /
== —_— | —p — —_—
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= B I | 1 |

v X Lh |
Hydrodynamic entrance region ot o 7 -

Hydrodynamically fully developed region

Fully Developed Pipe Flow

* Comparison of laminar and turbulent flow

There are some major differences between laminar and turbulent

fully developed pipe flows

- = .l
V= ligyg = tipasf2

Laminar / s
Can solve exactly (Chapter 9) f —— O
Flow is stead r
ow is steady A - [\ T
Velocity profile is parabolic \/6 X
Pipe roughness not important : u(r) R

It turns out thatV, = 1/2U,, and u(r)= 2V, (1 - r*/R?)

vg

Fully Developed Pipe Flow

Turbulent
Cannot solve exactly (too complex)
Flow is unsteady (3D swirling eddies), but it is steady in the mean
Mean velocity profile is fuller (shape more like a top-hat profile, with very sharp

slope at the wall)
r % .~ Instantaneous
| — profiles
0

%o

Pipe roughness is very important

Vivg 85% of U, (depends on Re a bit)

No analytical solution, but there are some good semi-empirical expressions that
approximate the velocity profile shape. See text

Logarithmic law (Eq. 8-46)

Power law (Eq. 8-49)

‘max

Fully Developed Pipe Flow

Wall-shear stress
® Recall, for simple shear flows u=u(y), we had

T=pdu/dy
® In fully developed pipe flow, it turns out that
T= pdu/dr
Laminar | Turbulent
—
| = | —-.I_ = —]
s\ope
- Tu(r) slope
N T

1, = shear stress at the wall,
acting on the fluid

Tw,tu rb > TW,Iam




Fully Developed Pipe Flow
Pressure drop

® There is a direct connection between the pressure drop in a pipe and the shear stress
at the wall

¢ Consider a horizontal pipe, fully developed, and incompressible flow

w
— 4 —— —— +—— — — — —
I Take CV inside the pipe wall -~ . I
Pr— \ —— P,

® Let’s apply conservation of mass, momentum, and energy to this CV (good review

problem!)

Fully Developed Pipe Flow

Pressure drop

e Conservation of Mass

mlz

mzzm

le = sz — V = const

D2

o= o

e Conservation of x-momentum

wD?

Vi=V,

Z Fp = %au -+ Z F:z,pr'ess -+ Z F:r,u'x'sc +%hgr = Z ﬁmV - Zﬁﬁ?’v

wD?

Py

out in

7 D? . .
P —TwwDLz\%\—/W

Terms cancel since B, = B,
andV; =V,

Fully Developed Pipe Flow
Pressure drop

® Thus, x-momentum reduces to

2 L
(P1 — PQ)% =T,wDL Or P — P, = 4¢w5

® Energy equation (in head form)

P, V2 P. V2
= +W%‘u = -2 +Wﬁ Thine,e + h'L
Py 2g ‘ Py 2g ‘

cancel (horizontal pipe)

Velocity terms cancel again because V, = V,, and o, = o, (Shape not changing)

P — P = h h, = irreversible head
1 2 PINL loss & it is felt as a pressure

drop in the pipe

Fully Developed Pipe Flow

Friction Factor

® From momentum CV analysis

L
Pl —P2 :47-11}5

® From energy CV analysis

Pl — P2 = pghL

® Equating the two gives

L
4w'—: h
TD panr

hr

_4nw L
rg D

* To predict head loss, we need to be able to calculate T,. How?

® Laminar flow: solve exactly

¢ Turbulent flow: rely on empirical data (experiments)

® In cither case, we can benefit from dimensional analysis!




Fully Developed Pipe Flow
Friction Factor
e T = func(p, V, U, D, €)

= average roughness of the

inside wall of the pipe
e Il-analysis gives g
T, VD
M =f |f= 2| |Re="7
PV P

HQZRB

€
I = —
7D

€/ D = roughness factor

I, = func(Ily, I13) [ = func(Re,e/D)

Fully Developed Pipe Flow
Friction Factor

® Now go back to equation for h; and substitute ffor 7,

h 41, L f=
L= ——F -
pg D

8Tw
pV?2
Lv:
D 2g

*Tw:fpVQ/S

hr =

¢ Our problem is now reduced to solving for Darcy friction factor f

* Reall f= func(Re,)\_ But for laminar flow, roughness

e Therefore does not affect the flow unless it
Laminar flow: = 64/Re (exact) 'S huge

Turbulent flow: Use charts or empirical equations (Moody Chart, a famous

plot of fvs. Re and &/D)

Darcy friction factor, f

The Moody Chart
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" Fully Developed Pipe Flow
Friction Factor

® Moody chart was developed for circular pipes, but can be used for
non-circular pipes using hydraulic diameter

¢ Colebrook equation is a curve-fit of the data which is convenient
for computations (e.g., using EES)

1 D 2.51
— = —2.0log ¢/ >

NG 37 © Rey/f

Implicit equation for f which can be solved
using the root-finding algorithm in EES

® Both Moody chart and Colebrook equation are accurate to +15%
due to roughness size, experimental error, curve fitting of data,
etc.




Types of Fluid Flow Problems

In design and analysis of piping systems, 3 problem
types are encountered
1. Determine Ap (or h)) given L, D,V (or flow rate)
Can be solved directly using Moody chart and Colebrook equation
2. DetermineV, given L, D, Ap

3. Determine D, given L, Ap,V (or flow rate)
B Types 2 and 3 are common engineering design
problems, i.e., selection of pipe diameters to
minimize construction and pumping costs

B However, iterative approach required since bothV and
D are in the Reynolds number.

-
Types of Fluid Flow Problems

° Explicit relations have been developed which eliminate
iteration. They are useful for quick, direct calculation,
but introduce an additional 2% error

V2L € vD\%?
= 0.5 0.5
- gD”hy, € 3.17v2L
V = —0.965 1
( L ) " [3.79 * ( gD%hy,

0.04

von 475 : —6 e
(v ) 1 \52 107" <¢/D < 10
_ 1.25 94 [
D = 0.66 [e (ghb) +vV (g-’u.) 5000 < Re < 3 x 10°

-2
10 %<e/D <1072
3000 < Re < 3 x 10°

Re > 2000

EXAMPLE 8-2 Pressure Drop and Head Loss in a Pipe

Water at 40°F (p = 62.42 Ibm/ft® and
__@ — ~30fts |0.12in )_ M =1.038x10-2 lom/ft - s) is flowing through a 0.12-

in-(0.010 ft) diameter 30-ft-long horizontal pipe
| 30 fi | steadily at an average velocity of 3.0 ft/s.

Determine :

(a) the head loss

(b) the pressure drop

(c) the pumping power requirement to overcome this pressure drop

Assumption: The entrance effects are negligible, and thus the flow is fully
developed.

Solution :

_ PVaD  (62.42 Ibnv/ft))(3 fi/s)(0.01 ft)

Re = = 1803 The flow is laminar.
I 1.038 X 10~ Ibm/ft - s
_8_ 8035
Re 1803
Vae 306 (3 MUs)

L
hy, =f5 20 = 0.0355 = 149 ft

TUTT0.01 ft 2(32.2 fils)

-
EXAMPLE 8-2 Pressure Drop and Head Loss in a Pipe

LPVae 00355 30 (6242 bt 3 ﬁ/s)?( 1 Ibf )
D 2 U001 2 32.2 Ibm - ft/s?

= 929 Ibt/ft? = 6.45 psi

AP=AP, =f

»The volume flow rate and the pumping power requirements are

V = VigA, = Vi (mD¥4) = (3 ft/s)[m(0.01 ft)/4] = 0.000236 ft/s

. 1w
W_ =V AP = (0.000236 ft*/s)(929 Ibf/ft® 7) =030 W
= ( SN ) (0.737 Ibf - fi/s

Therefore, power input in the amount of 0.30 W is needed to overcome the frictional
losses in the flow due to viscosity.




EXAMPLE 8-3 Determining the Head Loss in a Water Pipe

Water at 60°F (p = 62.36 lbm/ft® and p = 7.536x10 Ibm/ft - s) is flowing steadily in
a 2-in-diameter horizontal pipe made of stainless steel at a rate of 0.2 ft3/s.

Determine:
=the pressure drop
=the head loss
=the required pumping power input
for flow over a 200-ft-long section of the pipe.

0.2 /s

= 2in——
water

'
I 200 ft I
Assumption: The entrance effects are negligible, and thus the flow is fully
developed.

4 N

EXAMPLE 8-3 Determining the Head Loss in a Water Pipe
v % 0.2 f¥fs
V=—=— = = 9.17ft/s
A, D4 (2/12 ft)/4
VD 23 (9. s 2
Re — pvD (62.36 Ibm/ft )(971117 ft/s)(2/12 ft) — 126400
M 7.536 X 10" Ibm/ft - s
0.000007 ft
- = 2
&lD P12t 0.000042
Colebrook equation: % = 1] log(@ <k 2'51,) — lf = —2.01log (0'000042 231 ,)
Vi 37 ReVY TV 37 126,400V
, . f=0.0174
Vv 62.36 Ibm/ft*)(9.17 ft/s)?
ap =ap, = L2 o017 200 i ( m/fE)( s) ( 1 Ibf )
D 2 2/12 ft 2 32.2 1bm - fi/s>
= 1700 Ibf/f = 11.8 psi
AP, LV? 200 ft (9.17 ft/s)?
hy = — = f—— = 001T4—————————— = 273t
L opg D 2g 2/12 ft 2(32.2 ft/s?)
Woms = V AP = (0.2 ft*/s)(1700 Ibf/fi> (7) = 461 W
== ( ) 0737 ot - fus

EXAMPLE 8-4 Determining the Diameter of an Air Duct

Heated air at 1 atm and 35°C is to be transported in a

0.35 m3/s \ circular plastic duct. If the head loss in the pipe is not
air D = to exceed 20 m, determine the minimum diameter of
the duct.
I 150 m I
Assumption:

*The entrance effects are negligible, and thus the flow is fully developed.

=Air is an ideal gas.

*The duct is smooth since it is made of plastic.

*The flow is turbulent (to be verified)

Properties The density, dynamic viscosity, and kinematic viscosity of air at
35°C are p = 1.145 kg/m3, u = 1.895 X 105 kg/m - s, and v = 1.655 X

107° m?/s.

a N
EXAMPLE 8-4 Determining the Diameter of an Air Duct

vV _ V. 035mYs
A, wDY4 wD¥4
VD %))
Re = — = ——
v 1.655 X 1072 m¥s
1 /D 251 251
— — 90 log(e— + /,) - 20 log( f)
i 37 ReV Re\Vf
B _fé\/: . 20—fl50m V2
L pag D 2(9.81 mis?)

Therefore, this is a set of four equations in four unknowns, and solving them with
an equation solver such as EES gives

D = 0.267 m, f = 0.0180. V = 6.24 m/s, and Re = 100.800

Therefore, the diameter of the duct should be more than 26.7 cm if the
head loss is not to exceed 20 m. Note that Re > 4000, and thus the turbu-

lent flow assumption is verified.




EXAMPLE 8-4 Determining the Diameter of an Air Duct

Alternative solution strategy for the problem : iterative approach

»Set f equal to an initial value. (for example 0.02)
»Calculate Re from Colebrook eq.

L,_ = =20 1og(@ == 2‘5]_) = =20 log( 2'51,_
39 /
Vf ReV ReV/f

»Calculate V from egs (1) and (2)

voV_ v
A, wD¥4 @

VD
Re = > 2)

»Calculate D by below relation. And iterate operations until convergence.

i —f£1£ . 20 _flSOm V2
LT pog D 2(9.81 m/s?)

Minor Losses

® Piping systems include fittings, valves, bends, elbows, tees, inlets,

exits, enlargements, and contractions.

® These components interrupt the smooth flow of fluid and cause

additional losses because of flow separation and mixing

e We introduce a relation for the minor losses associated with these

components
V2 » K_is the loss coefficient.
hp = Kp, 2_ « Is different for each component.
g « Is assumed to be independent of Re.

 Typically provided by manufacturer or
generic table (e.g., Table 8-4 in text).

Minor Losses

* Total head loss in a system is comprised of major losses
(in the pipe sections) and the minor losses (in the

components)
hL — hL ,major + hL minor

2
hL—Zsz V ,32

- \_’_\/_\/
i pipe sections j components

o [fthe piping system has constant diameter

2
hi = (f +ZKL) Vg

Minor Losses N\

Here are some sample loss coefficients for various minor loss components. More values are
listed in Table 8-4, page 350 of the Cengel-Cimbala textbook:

Fipe Inlet

Reentrant: K, = 0.80 Sharp-i edged(h" = U 50) Well-rounded (D = Q. ZW(K 4

(=< Dandf=0.10) !'.T Slightly rounded (D = Q. l‘ .r(l 12
h__(see Fig. S 36) .

{ Rounding of an inlet
| makes a big difference.
—-if']n —rl‘ln —I-l']D
- |
Fipe Exit

Reentrant: K, = «

—_—

e | — |/
Sudden Expansion and Contraction (based on the velocily in the smalier diameler pipe)

LAt

Rounding of
an outlet
makes no
difference.

Sudden expansion: K, — (L =




—

Sudden contraction: See chart. [~

= . “ \ K For sudden
B — |4 -q;-) \
=@— “U 02 oA e L] Lo

Fnd
MNote: Thase are L]

backwards. The I valuss
listed for Expansion should e
be those for Contraction, equation for minor bead loss, 1.8 i i, = K ——
and viceversa y -

Note again that the far;
with the smailer pipe

velocity associated
y convention in the

Contraction

200
X =00t @o=02] [ e
. = 025 for a#D = 0.4
i~ 015k o- 06| @ o=
e = 0.1 for 0= 08 .

These are for expansions

B fies

S smooth bend: 9 miter bend T miltes bend A5 threaded élbow:
Flangsd: K, - 0.3 twithout vanes): K, = 1.1 | (with vanes): K, - 0.2 K =04
Threzded: A, = 0.9

) =) = =
1t 1, Bl TSR

180° roturn bend: |~Faa tbramcn fow: | Teatiing fiow: Threated amion
Flanged: &, = 0.2 Flanged: &, = 10 | Flangad: K, = 0.2 | K = 0.08
Threaduds K, = 1.5 Threaded: &, = 20/ Tivaaced: K, = 0.9/
Vo i — F—
s —
(L |/ 8L
) V) / - R
- = —_
/ TR
-— /

| For tees, there are two values of Ky, one for branch fflow and one for iing flow.

\

-

Piping Networks and Pump Selection

* Two general types of networks

A
® Pipes in series - L
Volume flow rate is constant le = — P2
Head loss is the summation of parts ) FaonLp Dy
® Pipes in parallel A Wil
Volume flow rate is the sum of the _

hy o=ty a+hy g

components
Pressure loss across all branches is the same fukn D,
1
P, A /n.' "‘\ ."" <r,
— A B —»
Iy =l

V=V + =1,

Piping Networks and Pump Selection

® For parallel pipes, perform CV analysis between points A and
B

fdy Dy

;i\ A= =

—An

PyeP,

B =

e w
% + CM%—F% % + 6%514_/2#_’_ - b= s
AP

hy =

Vym Uy Wy Uy

Py

* Since Ap is the same for all branches, head loss in all branches
is the same

Ly V{2

hp1=nh S B e B R
L1 L’2-f1D129 szg?g

-

Piping Networks and Pump Selection

® Head loss relationship between branches allows the following ratios to be developed

Flow rate ratio

n:(@@&)% &zﬂ_%(fzﬂzﬂl)%
Vo fi1 Ly Dy V, Dj

fiLi Dy

Real pipe systems result in a system of non-linear equations. Very easy to solve with
EES!

Note: the analogy with electrical circuits should be obvious
® Flow flow rate (VA) : current (I)

® Pressure gradient (Ap) : electrical potential (V)

® Head loss (h): resistance (R), however h; is very nonlincar




Piping Networks and Pump Selection

® When a piping system involves pumps and/or turbines, pump and
turbine head must be included in the energy equation

P Vi Py Vi
—+a1§ + 21 Hhpump,u | E+a2%+z2+h;,

Pg

® The useful head of the pump (h
turbine (hturbine,e
not constants.

pump,) OF the head extracted by the
), are functions of volume flow rate, i.e., they are

® Operating point of system is where the system is in balance, e.g.,
where pump head is equal to the head losses.

Pump and systems curves

_~Pump exit is closed to produce maximum head

e -

¥
’ hJ

; N A

1 k)

/ — Operating
/ 47N point

Head, m
-

B

; R , \
-t \ Supply
I -
A 1 \ 1 ¥
10p T | curve z

7 System curve T
i -~
a | _.

0 1 2 3 4 5 6

Flow rate, m'/s

100

E z
Pump efficiency, % Npump

o

L
=

-No

LR}

J— determine

Supply curve for h
experimentally by manufacturer. When
using EES, it is easy to build in functional

relationship for h

pump,u.
System curve determined from analysis of

fluid dynamics equations

Operating point is the intersection of
supply and demand curves

If peak efficiency is far from operating

point, pump is wrong for that

application.




