
Chapter 8:  Flow in Pipes

Objectives
1. Have a deeper understanding of laminar and turbulent 

flow in pipes and the analysis of fully developed flow

2. Calculate the major and minor losses associated with 
pipe flow in piping networks and determine the 
pumping power requirements

3. Understand the different velocity and flow rate 
measurement techniques and learn their advantages 
and disadvantages

Introduction

 Average velocity in a pipe
 Recall - because of the no-slip condition, the 

velocity at the walls of a pipe or duct flow is 
zero

 We are often interested only in Vavg, which we 
usually call just V (drop the subscript for 
convenience)

 Keep in mind that the no-slip condition causes 
shear stress and friction along the pipe walls

Friction force of wall on fluid

Introduction

 For pipes of constant 
diameter and 
incompressible flow
 Vavg stays the same down the 

pipe, even if the velocity 
profile changes
 Why? Conservation of Mass
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Introduction

 For pipes with variable diameter, m is still the same due to 
conservation of mass, but V1 ≠ V2
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Laminar and Turbulent Flows

Laminar and Turbulent Flows

 Critical Reynolds number (Recr) for 
flow in a round pipe

Re < 2300  laminar
2300 ≤ Re ≤ 4000  transitional 
Re > 4000  turbulent

 Note that these values are approximate.
 For a given application, Recr depends upon

 Pipe roughness
 Vibrations
 Upstream fluctuations, disturbances 

(valves, elbows, etc. that may disturb the 
flow)

Definition of Reynolds number

Laminar and Turbulent Flows

 For non-round pipes, define the hydraulic 
diameter 
Dh = 4Ac/P
Ac = cross-section area
P = wetted perimeter

 Example:  open channel
Ac = 0.15 * 0.4 = 0.06m2

P = 0.15 + 0.15 + 0.4 = 0.7 m
Don’t count free surface, since it does not contribute to 

friction along pipe walls!
Dh = 4Ac/P = 4*0.06/0.7 = 0.34 m
What does it mean? This channel flow is equivalent to a 

round pipe of diameter 0.34 m (approximately).



The Entrance Region

 Consider a round pipe of diameter D.  The flow can be 
laminar or turbulent.  In either case, the profile develops 
downstream over several diameters called the entry length Lh. 
Lh/D is a function of Re.

Lh

Fully Developed Pipe Flow
 Comparison of laminar and turbulent flow

There are some major differences between laminar and turbulent 
fully developed pipe flows

Laminar
 Can solve exactly (Chapter 9)

 Flow is steady

 Velocity profile is parabolic

 Pipe roughness not important

It turns out that Vavg = 1/2Umax and u(r)= 2Vavg(1 - r2/R2)

Fully Developed Pipe Flow
Turbulent

 Cannot solve exactly (too complex)
 Flow is unsteady (3D swirling eddies), but it is steady in the mean
 Mean velocity profile is fuller (shape more like a top-hat profile, with very sharp 

slope at the wall) 
 Pipe roughness is very important

 Vavg 85% of Umax (depends on Re a bit)
 No analytical solution, but there are some good semi-empirical expressions that 

approximate the velocity profile shape.  See text 
Logarithmic law (Eq. 8-46)
Power law (Eq. 8-49)

Instantaneous
profiles

Fully Developed Pipe Flow 
Wall-shear stress

 Recall, for simple shear flows u=u(y), we had 

=  du/dy

 In fully developed pipe flow, it turns out that

=  du/dr
Laminar Turbulent

w w

w,turb > w,lam
w = shear stress at the wall, 
acting on the fluid



Fully Developed Pipe Flow 
Pressure drop

 There is a direct connection between the pressure drop in a pipe and the shear stress 
at the wall

 Consider a horizontal pipe, fully developed, and incompressible flow

 Let’s apply conservation of mass, momentum, and energy to this CV (good review 
problem!)

1 2
L

w

P1 P2V
Take CV inside the pipe wall

Fully Developed Pipe Flow 
Pressure drop

 Conservation of Mass

 Conservation of x-momentum

Terms cancel since 1 = 2
and V1 = V2

Fully Developed Pipe Flow 
Pressure drop

 Thus, x-momentum reduces to

 Energy equation (in head form)

or

cancel (horizontal pipe)

Velocity terms cancel again because V1 = V2, and 1 = 2 (shape not changing)

hL = irreversible head 
loss & it is felt as a pressure
drop in the pipe

Fully Developed Pipe Flow 
Friction Factor
 From momentum CV analysis

 From energy CV analysis

 Equating the two gives

 To predict head loss, we need to be able to calculate w.  How?
 Laminar flow:  solve exactly
 Turbulent flow:  rely on empirical data (experiments)
 In either case, we can benefit from dimensional analysis!



Fully Developed Pipe Flow 
Friction Factor
 w = func(V, , D, )  = average roughness of the 

inside wall of the pipe

 -analysis gives

Fully Developed Pipe Flow 
Friction Factor
 Now go back to equation for hL and substitute f for w

 Our problem is now reduced to solving for Darcy friction factor f
 Recall
 Therefore
 Laminar flow:  f = 64/Re (exact)
 Turbulent flow: Use charts or empirical equations (Moody Chart, a famous 

plot of f vs. Re and /D)

But for laminar flow, roughness 
does not affect the flow unless it 
is huge

Fully Developed Pipe Flow 
Friction Factor

 Moody chart was developed for circular pipes, but can be used for 
non-circular pipes using hydraulic diameter

 Colebrook equation is a curve-fit of the data which is convenient 
for computations (e.g., using EES)

 Both Moody chart and Colebrook equation are accurate to ±15% 
due to roughness size, experimental error, curve fitting of data, 
etc.

Implicit equation for f which can be solved 
using the root-finding algorithm in EES



Types of Fluid Flow Problems
 In design and analysis of piping systems, 3 problem 

types are encountered
1. Determine p (or hL) given L, D, V (or flow rate)

Can be solved directly using Moody chart and Colebrook equation

2. Determine V, given L, D, p
3. Determine D, given L, p, V (or flow rate)

Types 2 and 3 are common engineering design 
problems, i.e., selection of pipe diameters to 
minimize construction and pumping costs
However, iterative approach required since bothV and 
D are in the Reynolds number.

Types of Fluid Flow Problems

 Explicit relations have been developed which eliminate 
iteration.  They are useful for quick, direct calculation, 
but introduce an additional 2% error

EXAMPLE 8–2 Pressure Drop and Head Loss in a Pipe
Water at 40°F ( = 62.42 lbm/ft3 and 
µ =1.03810-3 lbm/ft · s) is flowing through a 0.12-
in-(0.010 ft) diameter 30-ft-long horizontal pipe
steadily at an average velocity of 3.0 ft/s.

Determine :
(a) the head loss
(b) the pressure drop
(c) the pumping power requirement to overcome this pressure drop

Assumption: The entrance effects are negligible, and thus the flow is fully 
developed.
Solution :

The flow is laminar.

EXAMPLE 8–2 Pressure Drop and Head Loss in a Pipe

The volume flow rate and the pumping power requirements are

Therefore, power input in the amount of 0.30 W is needed to overcome the frictional 
losses in the flow due to viscosity.



EXAMPLE 8–3 Determining the Head Loss in a Water Pipe
Water at 60°F ( = 62.36 lbm/ft3 and µ = 7.53610-4 lbm/ft · s) is flowing steadily in 
a 2-in-diameter horizontal pipe made of stainless steel at a rate of 0.2 ft3/s.

Determine:
the pressure drop 
the head loss
the required pumping power input 

for flow over a 200-ft-long section of the pipe.

Assumption: The entrance effects are negligible, and thus the flow is fully 
developed.

EXAMPLE 8–3 Determining the Head Loss in a Water Pipe

Colebrook equation:

f = 0.0174

EXAMPLE 8–4 Determining the Diameter of an Air Duct
Heated air at 1 atm and 35°C is to be transported in a 
circular plastic duct. If the head loss in the pipe is not 
to exceed 20 m, determine the minimum diameter of 
the duct.

Assumption: 
The entrance effects are negligible, and thus the flow is fully developed.
Air is an ideal gas.
The duct is smooth since it is made of plastic. 
The flow is turbulent (to be verified)

EXAMPLE 8–4 Determining the Diameter of an Air Duct

Therefore, this is a set of four equations in four unknowns, and solving them with
an equation solver such as EES gives



EXAMPLE 8–4 Determining the Diameter of an Air Duct
Alternative solution strategy for the problem : iterative approach

Set f equal to an initial value. (for example 0.02)
Calculate Re from Colebrook eq.

Calculate V from eqs (1) and (2)  

(1)

(2)

Calculate D by below relation. And iterate operations until convergence.

Minor Losses
 Piping systems include fittings, valves, bends, elbows, tees, inlets, 

exits, enlargements, and contractions.

 These components interrupt the smooth flow of fluid and cause 
additional losses because of flow separation and mixing

 We introduce a relation for the minor losses associated with these 
components

• KL is the loss coefficient.  

• Is different for each component.

• Is assumed to be independent of Re.

• Typically provided by manufacturer or 
generic table (e.g., Table 8-4 in text).

Minor Losses
 Total head loss in a system is comprised of major losses 

(in the pipe sections) and the minor losses (in the 
components)

 If the piping system has constant diameter

i pipe sections j components



Piping Networks and Pump Selection
 Two general types of networks
 Pipes in series
 Volume flow rate is constant
 Head loss is the summation of parts

 Pipes in parallel
 Volume flow rate is the sum of the 

components
 Pressure loss across all branches is the same

Piping Networks and Pump Selection
 For parallel pipes, perform CV analysis between points A and 

B

 Since p is the same for all branches, head loss in all branches 
is the same

Piping Networks and Pump Selection
 Head loss relationship between branches allows the following ratios to be developed

 Real pipe systems result in a system of non-linear equations.  Very easy to solve with 
EES!

 Note:  the analogy with electrical circuits should be obvious
 Flow flow rate (VA) : current (I)
 Pressure gradient (p) : electrical potential (V)
 Head loss (hL): resistance (R), however hL is very nonlinear

Flow rate ratio



Piping Networks and Pump Selection

 When a piping system involves pumps and/or turbines, pump and 
turbine head must be included in the energy equation

 The useful head of the pump (hpump,u) or the head extracted by the 
turbine (hturbine,e), are functions of volume flow rate, i.e., they are 
not constants.

 Operating point of system is where the system is in balance, e.g., 
where pump head is equal to the head losses.

Pump and systems curves

 Supply curve for hpump,u:  determine 
experimentally by manufacturer.  When 
using EES, it is easy to build in functional 
relationship for hpump,u.

 System curve determined from analysis of 
fluid dynamics equations

 Operating point is the intersection of 
supply and demand curves

 If peak efficiency is far from operating 
point, pump is wrong for that 
application.


