Chapter 6: Momentum Analysis of

Flow Systems

Introduction

® Fluid flow problems can be analyzed using one of three basic
approaches: differential, experimental, and integral (or control
volume).

® In Chap. 5, control volume forms of the mass and energy equation
were developed and used.

® In this chapter, we complete control volume analysis by presenting
the integral momentum equation.
e Review Newton's laws and conservation relations for momentum.

e Use RTT to develop linear and angular momentum equations for control
volumes.

® Use these equations to determine forces and torques acting on the CV.




Objectives

» After completing this chapter, you should be able
to
» |ldentify the various kinds of forces and moments
acting on a control volume.

e Use control volume analysis to determine the forces
associated with fluid flow.
e Use control volume analysis to determine the

moments caused by fluid flow and the torque
transmitted.

Newton’s Laws

e Newton’s laws are relations between motions of
bodies and the forces acting on them.

e First law: a body at rest remains at rest, and a body in motion
remains in motion at the same velocity in a straight path when
the net force acting on it is zero.

e Second law: the acceleration of a body is proportional to the
net force acting on it and is inversely proportional to its mass.

M= T T g

® Third law: when a body exerts a force on a second body, the second body

exerts an equal and opposite force on the first.




Newton’s Laws

Fixed control volume

Deforming
control volume

CV is arbitrarily chosen by fluid dynamicist,
however, selection of CV can either simplify or
complicate analysis.

e Clearly define all boundaries. Analysis is often
simplified if CS is normal to flow direction.

e Clearly identify all fluxes crossing the CS.

e Clearly identify forces and torques of interest
acting on the CV and CS.

Fixed, moving, and deforming control

volumes.

e For moving CV, use relative velocity,

Vi=V —Vov
e For deforming CV, use relative velocity all
deforming control surfaces,

— —

V.=V —Ves




» Forces acting on CV consist of body forces that act
throughout the entire body of the CV (such as grauvity,
electric, and magnetic forces) and surface forces that
act on the control surface (such as pressure and viscous
forces, and reaction forces at points of contact).

> -
,/ dF. surface

Control volume (CV)

,/’d ;’ \_ _Z“ » Body forces act on each

{ i B i volumetric portion dV of the CV.
| l 95\/\" » Surface forces act on each
7 “ portion dA of the CS.
|

7
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Control surface (CS)
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Body Forces

P ® The most common body force is
y

gravity, which exerts a downward force

on every differential element of the CV
dz l The different body force
dV.p - 3 .
deody = ngfr‘avity — PQdV

ooy
°

' — ————— ———

dx

o I ° Typical convention is that
\

. . . . _’
acts in the negative z-direction, g

7 deody = ngl‘avity =ps av g* — —gk

e Total body force acting on CV
J—‘ Y5 J

> Pty = [ 3V =mevy
cVv

- /
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Body and Surface Forces

» Surface integrals are cumbersome.

e Careful selection of CV allows
expression of total force in terms of
more readily available quantities like
weight, pressure, and reaction
forces.

e Goal is to choose CV to expose only

the forces to be determined and a
minimum number of other forces.

Z [
Out

§ Eqra'vity § Fpressure + § F’uiscous & E Fother
L. -~ - + -
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"

body force surface forces
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Linear Momentum Equation

® Newton’s second law for a system of mass m subjected to
a force F is expressed as

ﬁzm&’zm%z%(mﬁ)
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Linear Momentum Equation

dBy, d L
_ J ob dV +j pb(V,+ 1) dA
dt dt CV ‘ CS ‘
B=mV b=V b=V
- | |
d(ml_}]i,}r% d —3 - 3
_ J pV dV +J pV(V, - 1) dA
dt dt ov s

- /
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Linear Momentum Equation

The general form of the linear momentum equation that applies to fixed, moving, or
deforming control volumes :

. od - o
ZF_acvpvdchspV(vr-n)dA

The sum of all The time rate of change The net flow rate of
external forces | = | of the linear momentum | + | linear momentum out of the

acting on a CV of the contents of the CV control surface by mass flow

Fixed CV: 3 F = v+ [ V(Y i)oA




Special Cases

F= V(V,-7) dA
* Steady Flow 2 /csp ( n)

® Average velocities m = f p (17-1'_?3) dAc = pVavgAc

Ac

* Approximate momentum flow rate

[ 67 (7+7) A% Vag AcViany = Vg
CS

® To account for error, use momentum-flux correction

factor [
Y F= % /pv W+ Bty — 3 BriVau,

out in

N - 1 Vo2
[ AV YA = priV,, =mp ,a:A_C/AC (vavg) dA.

Special Cases

(a) (b) (c)

Examples of inlets or outlets in which the uniform flow (£ = 1) approximation is
reasonable: (a) the well-rounded entrance to a pipe, (b) the entrance to a
wind tunnel test section, and (c) a slice through a free water jet in air.

f=4/3 (laminar flow) and 1.01-1.04 (turbulent flow)

[ I — —_
r :-1}
R{
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Special Cases s 0 07T
\B‘ Fixed \\\\
control
Steady linear momentum equation : ; volume i
o -
Z F Z ﬂrﬁ\/ Z ﬁrﬁ\/ nirl,'l.?a.(.g,l Out?ﬁ‘\- %\

out m)‘"ngj Out m4v y

Flow with No External Forces : 0 d(mV)CV Z,Bm\/ Zﬂm‘/

out
d(mV ) dv,

at = Mgy d'fv =(ma)ey

Trust: Fbody—mbodya Zﬂm\/ Z,Bm\/

out

The thrust needed to lift the space shuttle is generated by the rocket
engines as a result of momentum change of the fuel as it is accelerated
rom about zero to an exit speed of about 2000 m/s after combustion.

" EXAMPLE 6-2 The Force to Hold a )
Deflector Elbow in Place

A,=113 cm?

Determine
(a) the gage pressure at the center of the inlet of the elbow (P 454¢)
(b) the anchoring force needed to hold the elbow in place (Fg)




" EXAMPLE 6-2 The Force to Hold a A
Deflector Elbow in Place

: A;=7 cm? Assumptions :
Pam 1) The flow is steady, and the frictional
1__ V. effects are negligible.
! The weight of the elbow and the

water in it is negligible.

The water is discharged to the

atmosphere, and thus the gage

pressure at the outlet is zero.

The flow is turbulent and fully

A,=113 cm? developed at both the inlet and
outlet of the control volume, and we
take the momentum-flux correction
factor gto be 1.03.

m 14 kg/s
Vi=——= E 5o = 1.24 m/s
pA, (1000 kg/m*)(0.0113 m?)
i 14 kg/s
V= — — = = 20.0 m/s

pA, (1000 kg/m?)(7 X 10~ *m?)

- /

EXAMPLE 6-2 The Force to Hold a Deflector Elbow in Place

Fam ¥ The Bernoulli equation for a streamline
. @ﬂ,} going through the center of the elbow is
= expressed as

P, — Pym = (1000 kg/m*)(9.81 m/s%)

35 2 _ 2 .
" (fho oo =W s o)( I kN 2)
2(9.81 m/s%) 1000 kg - m/s

Py page = 202.2 kN/m? = 202.2 kPa (gage)




EXAMPLE 6-2 The Force to Hold a Deflector Elbow in Place

Pym  The momentum equation for steady one-
®\| mV; dimensional flow is
e: * == H_l_
_J—D-Fm :;5';}::;;- f” 30 em E F= § AoV = % pmy
N atls |
E': ___,"'"; FRY+P1,gagcAI =BmVECOSH—BﬁIV]
Plose Fp. = BV, sin 0

FR.t = BHI(VZ cos #§ — VI) - Pl,gageAl

IN
1.03(14 kg/s)[(20 cos 30° — 1.24) m!s](ﬁ)
g - m/s”

— (202,200 N/m?)(0.0113 m?)
232 — 2285 = —2053 N

Fp, = BmV, sin 8 = (1.03)(14 kg/s)(20 sin 30° mfs)( = 144N

1
1 kg - m!sz)

The negative result for Fg, indicates that the assumed direction is wrong, and it should be reversed. Therefore,

Fry acts in the negative x-direction.

Discussion :There is a nonzero pressure distribution along the inside walls of the elbow, but since the
Qontrol volume is outside the elbow, these pressures do not appear in our analysis. /

EXAMPLE 6-3 The Force to Hold a Reversing Elbow in Place

Determine the anchoring force F; needed
to hold the elbow in place.

We are neglecting the weight of the elbow
and the water.

Fpe + Py gapeAy = Bom(—=V,) — BimV; = —Bm(V, + V})
Fpe = —Bm(V, + V)) — Pl,ga 1
I N
= —(1.03)(14 kg/s)[(20 + 1.24) mfs](—,,) — (202,200 N/m?)(0.0113 m?)
1 kg - m/s7,
= —306 — 2285 = —2591 N

The horizontal force on the flange is 2591 N acting in the negative x-direction (the
elbow is trying to separate from the pipe). This force is equivalent to the
weight of about 260 kg mass, and thus the connectors (such as bolts) used must
be strong enough to withstand this force.

\ /
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EXAMPLE 6-4 Water Jet Striking a Stationary Plate

Pa[m
A
m =10 kg/s |
Vavg1=20Im/s |
v, |
\ In I
j— Fp
@ T
|
| |
| |
| |
|

.

After the strike, the water stream splatters off in all
directions in the plane of the plate.

Determine the force needed to prevent the plate from
moving horizontally due to the water stream.

Assumptions

1) The water jet is exposed to the atmosphere, and
thus the pressure of the water jet and the
splattered water leaving the control volume is
atmospheric pressure, which is disregarded since
it acts on the entire system.

2) The effect of the momentum-flux correction
factor is negligible, and thus g=1.

-

EXAMPLE 6-4 Water Jet Striking a Stationary Plate

Pa[m
A
m =10 kg/s |
Vavglz_%o Im/s |
v, |
\ In I
j— Fp
@ T
|
| |
| |
: |

Discussion:

The momentum equation for steady one-dimensional
flow

SF=SpinV— S gnV
out in
—Fp=0— BV,

= I N
Fp = BmV, = (1)(10 kg/s)(20 111.*’5](—2) =200 N
I kg - m/s

(equivalent to the weight of about a 20-kg mass)

- If the control volume were drawn instead along the interface between the water
and the plate, there would be additional (unknown) pressure forces in the analysis.
-By cutting the control volume through the support, we avoid having to deal with

this additional complexity.

-This is an example of a “wise” choice of control volume.

-
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EXAMPLE 6-5 Power Generation and Wind Loading of a Wind Turbine

Streamline P.m A wind generator with a 30-ft-diameter blade span.

The turbine generates 0.4 kW of electric power.

|
\

IV,=7 mph 5. Par =0.076 lbm/ft3
n'ﬂ?l:—-» =2
10, @ Determine:
L _ (a) the efficiency of the wind turbine—generator unit

(b) the horizontal force exerted by the wind on the
supporting mast of the wind turbine.

—x (c) What is the effect of doubling the wind velocity

to 14 mph on power generation and the force

exerted? Assume the efficiency remains the

same.

Assumptions

1) The efficiency of the turbine—generator is independent of wind speed.

2) The frictional effects are negligible, and thus none of the incoming kinetic energy is
converted to thermal energy.

3) The average velocity of air through the wind turbine is the same as the wind velocity
(actually, it is considerably less—see the discussion that follows the example).

/

-

EXAMPLE 6-5 Power Generation and Wind Loading of a Wind Turbine

Streamline p The power potential of the wind is proportional to its kinetic energy
atm
S 14667 ft/s
_ | V, = (7T mph){ ———— | = 10.27 ft/s
_ | 1 mph
Pa[m - | ,
T _ mD? s (30 ft)*
| = p\V,A; = p;V, — = (0.076 1bm/ft*)(10.27 ft/s) = 551.7 Ibm/s
[V,=7 mph | v 4
.’ﬂ?l I—"' |—£ i v%
I | W = titke; = mi—
D 16) 2
L | 7]
-~ (10.27 ft/s) ( 1 Ibf )( 1 kW )
~~ | = (551.7 Ibm/s :
g F | ( " 322 tom - 102/ \737.36 Ibf - fus
-
! — 1.225kW
—2x
Then the turbine—generator efficiency becomes :
Wyt 0.4 kW .
MNwind turbine — 1, = 0.327 (or 32.7%)

W 1225kW
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EXAMPLE 6-5 Power Generation and Wind Loading of a Wind Turbine

Streamline

~

p,..  The frictional effects are assumed to be negligible,
- Tl and thus the portion of incoming kinetic energy not
p A | converted to electric power leaves the wind turbine
*‘lﬂ . | as outgoing kinetic energy.
|
IV,=7 mph | .=, . . V% . V%
m?ll | mvs mkﬁZ = mkel(l - T}Windturbine) — m? = HI?“ — Twind turbine)
(D 1)} —
L | Vo= ViV'] — Nyind wbine = (10.27 ft/s)V'1 — 0.327 = 8.43 fi/s
~~ |
S _.‘ﬁ? l — — —
! > F= > pmV— > pmV
b—2x out in
FR = sz - mV] = m(VZ - V|)

I Ibf
F, = i(V, — V,) = (551.7 Ibm/s)(8.43 — 10.27 fts) ———
=V, = V) =( /X ) (32.2 ]bm'ftfsz)

= —31.51bf

Then the force exerted by the wind on the mast becomes F . = -Fg = 31.5 Ibf

- /

-

EXAMPLE 6-5 Power Generation and Wind Loading of a Wind Turbine

~

Streamline

. Pym
-7
_ |
Pam -~ :
I |
[V,=7 mph |
iV, — L2
10 @
L_ |
T~ |
~ I |
“‘xgl‘v |
p—2Xx T

The power generated is proportional to V2 since the mass flow rate is pro-
portional to V and the kinetic energy to V2. Therefore, doubling the wind
velocity to 14 mph will increase the power generation by a factor of 23 = 8
to 0.4 X 8 = 3.2 kW. The force exerted by the wind on the support mast is
proportional to V2. Therefore, doubling the wind velocity to 14 mph will
increase the wind force by a factor of 22 = 4 to 31.5 X 4 = 126 Ibf.

o
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EXAMPLE 6-5 Power Generation and Wind Loading of a Wind Turbine

Patm Discussion:

Fg=m[V3_ V|} (1)

»The smaller control volume between sections
2 3 and 4 encloses the turbine, and A; =A, =A and
V; =V, since itis so slim.

»The turbine is a device that causes a pressure
change, and thus the pressures P; and P, are

different.
" »The momentum equation applied to the
turbine smaller control volume gives
FR+P3A_P4A=U — FRZ{P4_P3)A (2}
» Writing Bernoulli Equation for two section (before and after the rotor blades)
p. V2 P. V2 P, V; P, V3
L+l ==+"+z; and —+2+z="2+"2+gz
Pg 28 P 2g Pg 2g Pg 28

Adding these two equations and noting that z, = z, = z; = z,, V5 = V,,
and P, = P, = P, gives

V%_V%=P4_P3

\ 5 p (3) /

4 N

EXAMPLE 6-5 Power Generation and Wind Loading of a Wind Turbine

Palm

ngm[VE_ 14)I (1)

:FR+P3A—P4A=U —  Fp=(P,—P)A @

turbine
Vi-Vvi P,—P
2 - 1_ I 3 @)
2 P
Substituting m = pAV; into Eq. 1 and then combining it with Egs. 2 and 3
gives
VitV
= (4)




EXAMPLE 6-5 Power Generation and Wind Loading of a Wind Turbine w

Now back to the wind turbine. The velocity through the turbine can be
expressed as V3 = V(1 — a), where a < 1 since V3 < V,. Combining this
expression with Eq. 4 gives V, = V(1 — 2a). Also, the mass flow rate -,
through the turbine becomes m = pAV5; = pAV (1 — a). When the frictional v,

Streamline

effects and losses are neglected, the power generated by a wind turbine is '©
simply the difference between the incoming and the outgoing kinetic energies:

m(Vi— V)  pAVi(l —afVi— Vil — 2a)’]
2 - 2 turbine

Streamline

W = rmike; — key) =

= 2pAVia(l — a)’

Dividing this by the available power of the wind Wmax = mV4$/2 gives the effi-
ciency of the wind turbine in terms of a,

W 2pAVia(l — a)
1 wind turbine — W = 2
max (,OAVI]VJQ

The value of a that maximizes the efficiency is determined by setting the
derivative of nying tumine With respect to a equal to zero and solving for a. It
gives @ = 1/3. Substituting this value into the efficiency relation just pre-
sented gives Nying tumine = 16/27 = 0.593, which is the upper limit for the
efficiency of wind turbines and propellers. This is known as the Betz limit.
The efficiency of actual wind turbines is about half of this ideal value.

N y

EXAMPLE 6-6 Repositioning of a Orbiting Satellite

An orbiting satellite has a mass of mg,, = 5000 kg and is
traveling at a constant velocity of V,,

An attached rocket discharges m;=100 kg of gases from
the reaction of solid fuel at a velocity V;=3000 m/s
relative to the satellite.

The fuel discharge rate is constant for 2 s.

Determine :

(a) the acceleration of the satellite during this 2-s period

(b) the change of velocity of the satellite during this time
period

(c) the thrust exerted on the satellite

Assumptions :

1) There are no external forces acting on the satellite
2) The effect of the pressure force at the nozzle exit is negligible.
3) The mass of discharged fuel is negligible relative to the mass of the satellite

\ /
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EXAMPLE 6-6 Repositioning of a Orbiting Satellite

The satellite can be treated as a solid body with constant mass

| |
| | .
| d(mV) - - dv —
| (m - & sal -
| | 0= S+ > pmV — X BV o Mo = = iV
| | out mn
|
|
| IE Satellite 5 :
Msat _+V“: AV _ . V, dV My V sl V
I o di ™ dt Msay ! Mgy f
|
|
dV,, mdAt (100 kg2 s) ,
: Ay = —, - = COe)25) (3000 m/s) = 30 m/s~ (a)
J

dt  my 5000 kg

» The velocity change of the satellite during the first 2 s
dV,, = agdt - AV, = ay At = (30 m/s>)(2 s) = 60 m/s (D)

sat sat Lt

» The thrust exerted on the satellite is

. 1 kN _ .
F,=0-— mf(_v}) = —(100/2 kg/s)(—3000 nﬂs)(m) = 150 kN (C)

- /

\
EXAMPLE 6-7 Net Force on a Flange

| Flow rate, Q = 18.5 gal/min

|

: Density of water, p = 62.3 lbm/ft®

|

I The inner diameter of the pipe, D = 0.065 ft
|

1

P1 gage = 13.0 psig

Z out Wwater + Wfaucet =12.8 Ibf
L‘_ Calculate the net force on the flange.
Assumption: The flow at the inlet and at the outlet

is turbulent and fully developed so that the
Momentum flux correction factor is about 1.03.




EXAMPLE 6-7 Net Force on a Flange

v Vv 18.5 gal/min (0.1337 f*\ /1 min
Vi=V=V=—= = = = 12.42 ft/s
A. wDY4  w(0.065 ft)/4 1 gal 60 s
) . - ~{0.1337 f*\ /1 min
m = pV = (62.3 Ibm/ft")(18.5 gal/min) = 2.568 Ibm/s
1 gal 60s /) e e -
Flange CV

SF= gV - S pmV
out in P].gagc

The momentum equations along the x- and zdirections become

Fpe + Py gapeAy = 0 — m(+V))

Fry = Wianeer = Waaier = 1(=V2) =0 7
Fpe = —mV, — Pl,ga 1 Z Out
= —(2.568 Ibm/s)(12.42 fl;’s)(#) — (13 Ibf/in%) w L.
32.2 1bm - ft/s 4 X
= —7.20 Ibf
Fp, = —mVs + Wipcer+ water

1 Ibf
= —(2.568 Ibm/s)(12.42 flfs)(—) + 12.8 Ibf = 11.8 Ibf
32.2 Ibm - ft/s?

\
EXAMPLE 6-7 Net Force on a Flange

Then the net force of the flange on the control volume

Fo=Fpi + Fok = —720i + 118k Ibf

b e e

wfaucel
Out

From Newton’s third law, the force the faucet assembly exerts on the flange
is the negative of Fg,

%

— —Fp=7.20i — 11.8k Ibf

F faucet on flange




Angular Momentum

» Motion of a rigid body can be considered to be the
combination of
e the translational motion of its center of mass (U,, U,, U,)
e the rotational motion about its center of mass (a,, o,, ,)

» Translational motion can be analyzed with linear
momentum equation.

» Rotational motion is analyzed with angular
momentum equation.

Review of Rotational Motion

Angular velocity @ is the angular
distance @ traveled per unit
time, and angular acceleration &
is the rate of change of angular

Velocity.

L_de_du) _1d_V

dt dt rdt r
_dw_dQQ_IdV_at
T dt d2  rdt 1

(07

N——_— - =

V =rw and a; = ro




Review of Rotational Motion

The torque M acting on a point mass m at a normal distance r from the axis
of rotation is expressed as

M =rF; =rma; =mrla

The total torque acting on a rotating rigid body about an axis can be

determined by integrating the torques acting on differential masses dm over the
entire body to give

M = rzadm:U r2dm}a:1a
mass

mass

| : The moment of inertia of the body about the axis of rotation
(measure of the inertia of a body against rotation)

~
Review of Rotational Motion

The moment of momentum, called the angular momentum, of a point mass m
about an axis can be expressed as H =rmV = r’mo

Then the total angular momentum of a rotating rigid body can be determined by
integration to be

Angular momentum _ 2 B 2 ~
(moment of momentum): H= -[mass r“odm = “mass r<dm |w=Iw

Newton’s second law : F = ma
In terms of the rate of change _. d (mV)
H=rmV . . F —
~ of linear momentum : -
=rmlrw) dt
1 :rzmcu
S L The counterpart of Newton’s M’ — g
- i RN second law for rotating bodies: =l
wmm In terms of the rate of change of angular momentum
| iy /
A Angular ~ . ~
! r , ~ . do d(lw) dH
sl i _o-=Tm V=ro {momentum M=Ia=1 = (1&) =
I equation: dt dt dt
|




Review of Rotational Motion

L% Riiii=n L i, gAF:
AT S0 IETatiion., o O FTILAT SCCEETANON, O
n= =4 & |I_| i =

DEAT INUITNENET DA TOOINETLLITT]
s

(] £ O Ne., o
£l iy 0

Rliii=tn A L] e, Rliii=n A IO

—

Analogy between corresponding
linear and angular quantities

Review of Angular Momentum
M=rxF
H

—7rxmV

® Moment of a force:

® Moment of momentum:

* For a system: ﬁsys — / (7 X V)p dV
sYs dH,s d .
=2 FxV)pav
it dt ),
® Therefore, the angular momentum equation can be

written as: Z M = djizys

E M : the net torque applied on the system, which is the vector
sum of the moments of all forces acting on the system

dﬁsys
dt

: the rate of change of the angular momentum of the system




The Angular Momentum Equation

Reynolds Transport Theorem (RTT) :

dBy, d =
- I pde+I pb(V. - 7)dA

dt dt ov cs

(\1 r r
stys d - 0 T T
——I= -ﬂTI (rxV)pdu+ I (r x V)p(V,-n)dA| (General form)
t t
cv Cs

) The net flow rate of
The time rate of change
angular momentum
s | = | of the angular momentum | +
out of the control

external moments
surface by mass flow

The sum of all
of the contents of the CV

actingona CV

: The Angular Momentum Equation

ode - o
General form: ZM =a Cv(r xV)p d‘v’+LS(I’ xV)p (V..N)dA

FiedCcv: D M :%.'Cv(rx\hp dv + LS(FXV)/) (V.7i)dA

Steady flow: Z M = .cs ( r ><\7 )p (\7r n )dA

> Approximate form using average properties at inlets and outlets :

DM =%Lv(rx\7)pdv + ) FxmV = FxmV

out in

Steady flow: ZM =ZFxm\7—ZFxm\7

out n




: The Angular Momentum Equation

. dH ~ - . =
Flow with No External Moments : 0 = — %V + Z rxmvV — Z rxmvV
dt out in

This is an expression of the conservation of angular momentum principle, which
can be stated as in the absence of external moments, the rate of change of the
angular momentum of a control volume is equal to the difference between the
incoming and outgoing angular momentum fluxes.

When the moment of inertia | of the control volume remains constant, the
first term of the above equation simply becomes moment of inertia times
angular acceleration, | oy

Therefore, the control volume in this case can be treated as a solid body, with a
net torque of

Mpody = Zhody@ = Y (F xmV) = (FxmV)

in out

This approach can be used to determine the angular acceleration of space vehicles
kand aircraft when a rocket is fired in a direction different than the direction of motiony

EXAMPLE 6-8 Bending Moment Acting at the Base of a Water Pipe

The mass of the horizontal pipe section

Y — = when filled with water is 12 kg per meter
3 length
i

2m gl 0™ Assumption:
i
: The pipe diameter is small compared to
{4 the moment arm, and thus we use average

values of radius and velocity at the outlet.

Determine the bending moment acting at the base of the pipe (point A) and the
required length of the horizontal section that would make the moment at point A zero.
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EXAMPLE 6-8 Bending Moment Acting at the Base of a Water Pipe

R T = pAV = (1000kg/m>)[7(0,10m)? / 4] (3m/s) = 23,56 kg/s
i W =mg = (12kg/m) (1m) (9,81m/s*) 5 |=118N
i 1kg-m/s
]
»'m ‘L]O cm
i
]
| U NLEALY
5 A out in

M A~ r1W = —rszZ
M, =rW-rmV,

— (0,5m)(118 N)—(2m) (23,56 kg/s) (ms)[“{;%j

=—825N-m

The negative sign indicates that the assumed direction for M, is wrong and should
be reversed. Therefore, a moment of 82.5 Nm acts at the stem of the pipe in the

clockwise direction.
\ %
4 EXAMPLE 6-8 Bending Moment Acting at the Base of a Water Pipe
‘..._] m;.‘ 3mfs
L
m 4;»]0 cm
: A The length L of the horizontal pipe that will

cause the moment at the pipe stem to
vanish is determined to be

0= r1W - r2mV2 - 0= (L / 2)LW - rsz2

L [r,mV, :\/2><141.4N-m:2.40m
w 118 N/m
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EXAMPLE 6-9 Power Generation from a Sprinkler System

Assumptions :

rotating with the sprinkler head).

.

! Electric . ;
generator 1 Mozl
mno;{z]e‘;‘, -7 N
4 “
4 \
Tshaf[ \
- A ‘
V; >
et v — [y — }-
\ Jet \ \l i
\ i r=0.6m i
\ i
\ |
N v ;
- - ;’”nw.r.lc‘r
— I — -
; m. .V
Mo = 20 I/s nozzle’r

1) The flow is cyclically steady (i.e., steady from a frame of reference

2) Generator losses and air drag of rotating components are neglected.

~

A large lawn sprinkler with four
identical arms is to be converted
into a turbine to generate electric

power by attaching a generator to
its rotating head.

N =300 rpm

The diameter of each jetis 1 cm.

Estimate the electric power produced.

/

-

Electric

EXAMPLE 6-9 Power Generation from a Sprinkler System

~

generator ) _ f'f nozzleVy
mnou]e‘?‘, - o
/ AN
i Tshaf[ \
Ve A2 —~ L _{ [ S—
e S r=06mp
A
\\ R
“l ;—— /;’”nozzlc r
n'r[mal mnoz;ﬁlcv.r T
vnozzle 5L/s 1m?
Vit =y = 7| Tooo L |~ 6366 ms
jet  [m(0,01m)*/ 4]

The angular and tangential velocities of the nozzles are

Imin

@ =271 =27(300 rev/min) ( j =31.42 rad/s

60s

Viozle = Vo =(0.6m)(31.42 rad/s)=18.85 m/s

\




4 EXAMPLE 6-9 Power Generation from a Sprinkler System A

| Electric Then the average velocity of the
generator . it f}"“"-"-'c‘? water jet relative to the control
Mhorrielr, <~ . volume (or relative to a fixed
. ~ ’ Ty \‘ location on earth) becomes
S~ Id *
\\ L= D6ml,
) !
s a _ ;”I}n/wxlcw
lygal mnmf.lcﬁ T

V, =V, —V. e = 63.66—18.85 = 44.81 m/s

The angular momentum equation about the axis of rotation :

—Tshaft = —4Mpozz1eVy or Tshaft = MiotalVr
. 1IN
Tohatt = MiotalVr = (0,6 m)(20 kg/s )(44.81m/s ———— [=5377N-m
kg m/s

Miotal = AV1otal = (Lkg/LY20 L/s)=20ke/s

. /

EXAMPLE 6-9 Power Generation from a Sprinkler System A
i Electric . ! ' ! ' T T
generator ) 4 i""ﬂﬂlcvr
mnmf]c"’j;,’, .
4 \\\ E
Vi \ .
hf'm ’F“”; 2 S }i :/"\Tmﬂ ‘l: E
- Ve 1\ N o6 m\ﬂ ‘;g_
7 V: \\ n}’:.*,.v E
{ 1e Iﬁ-(:“_"// NOZZle™r é
ﬂr mlolﬂt mnoulcvr 0 , , , , , ,
Then the power generated becomes : 0 200 400 fgg 800 1000 1200
W =27N1T, ¢ = @, =(31.42 rad/s) (537.7 N-m) LW ) 69kw
1000 N -m/s
Discussion:

1) The sprinkler is stuck and thus the angular velocity is zero. The torque developed will be
maximum in this case since V,,,, = 0 and thus V, = V,, = 63.66 m/s, giving
Tehatt max =764 N - m. But the power generated will be zero since the shaft does not rotate.
2) The shatft is disconnected from the generator (and thus both the torque and power
generation are zero) and the shaft accelerates until it reaches an equilibrium velocity. Setting
Tsnat = 0 in the angular momentum equation gives V, = 0 and thus Vi, = V5, = 63.66 m/s.
The corresponding angular speed of the sprinkler is

. ®  Viogle _ 63.66m/s( 60s
\ 7222 2ar  22(0,6m)

- j:1013 rpm
1 min




Homework
18,21,22,25,27.29,33,36,40, 42,43,47,51,53,58,60,66,73




