
Chapter 6:  Momentum Analysis of 
Flow Systems

Introduction
 Fluid flow problems can be analyzed using one of three basic 

approaches:  differential, experimental, and integral (or control 
volume).

 In Chap. 5, control volume forms of the mass and energy equation 
were developed and used.

 In this chapter, we complete control volume analysis by presenting 
the integral momentum equation.
 Review Newton's laws and conservation relations for momentum.
 Use RTT to develop linear and angular momentum equations for control 

volumes.
 Use these equations to determine forces and torques acting on the CV.



Objectives
 After completing this chapter, you should be able 

to
 Identify the various kinds of forces and moments 

acting on a control volume.
 Use control volume analysis to determine the forces 

associated with fluid flow.
 Use control volume analysis to determine the 

moments caused by fluid flow and the torque 
transmitted.

Newton’s Laws
 Newton’s laws are relations between motions of 

bodies and the forces acting on them.
 First law: a body at rest remains at rest, and a body in motion 

remains in motion at the same velocity in a straight path when 
the net force acting on it is zero.

 Second law: the acceleration of a body is proportional to the 
net force acting on it and is inversely proportional to its mass.

 Third law: when a body exerts a force on a second body, the second body 
exerts an equal and opposite force on the first.



Newton’s Laws

Choosing a Control Volume

 CV is arbitrarily chosen by fluid dynamicist, 
however, selection of CV can either simplify or 
complicate analysis.
 Clearly define all boundaries. Analysis is often 

simplified if CS is normal to flow direction.
 Clearly identify all fluxes crossing the CS.
 Clearly identify forces and torques of interest 

acting on the CV and CS.

 Fixed, moving, and deforming control 
volumes.
 For moving CV, use relative velocity,

 For deforming CV, use relative velocity all 
deforming control surfaces,



Forces Acting on a CV
 Forces acting on CV consist of body forces that act 

throughout the entire body of the CV (such as gravity, 
electric, and magnetic forces) and surface forces that 
act on the control surface (such as pressure and viscous 
forces, and reaction forces at points of contact).

• Body forces act on each 
volumetric portion dV of the CV.

• Surface forces act on each 
portion dA of the CS.

Body Forces

 The most common body force is 
gravity, which exerts a downward force 
on every differential element of the CV

 The different body force

 Typical convention is that
acts in the negative z-direction,

 Total body force acting on CV



Body and Surface Forces
 Surface integrals are cumbersome.

 Careful selection of CV allows 
expression of total force in terms of 
more readily available quantities like 
weight, pressure, and reaction 
forces.

 Goal is to choose CV to expose only 
the forces to be determined and a 
minimum number of other forces.

Linear Momentum Equation
 Newton’s second law for a system of mass m subjected to 

a force F is expressed as



Linear Momentum Equation

Linear Momentum Equation
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The general form of the linear momentum equation that applies to fixed, moving, or 
deforming control volumes :
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Special Cases
 Steady Flow

 Average velocities

 Approximate momentum flow rate

 To account for error, use momentum-flux correction 

factor 

( ) c avgAc
V V n dA mV  
   

Examples of inlets or outlets in which the uniform flow ( = 1) approximation is
reasonable: (a) the well-rounded entrance to a pipe, (b) the entrance to a 
wind tunnel test section, and (c) a slice through a free water jet in air.

Special Cases

 = 4/3 (laminar flow) and 1.01-1.04 (turbulent flow)



Steady linear momentum equation :

Special Cases
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The thrust needed to lift the space shuttle is generated by the rocket
engines as a result of momentum change of the fuel as it is accelerated
from about zero to an exit speed of about 2000 m/s after combustion.

EXAMPLE 6–2 The Force to Hold a 
Deflector Elbow in Place

A1=113 cm2

A2=7 cm2

Determine 
(a) the gage pressure at the center of the inlet of the elbow (P1,gage)
(b) the anchoring force needed to hold the elbow in place (FR)



A1=113 cm2

A2=7 cm2

EXAMPLE 6–2 The Force to Hold a 
Deflector Elbow in Place

Assumptions :
1) The flow is steady, and the frictional 

effects are negligible.
2) The weight of the elbow and the 

water in it is negligible. 
3) The water is discharged to the 

atmosphere, and thus the gage 
pressure at the outlet is zero. 

4) The flow is turbulent and fully 
developed at both the inlet and 
outlet of the control volume, and we 
take the momentum-flux correction 
factor  to be 1.03.

The Bernoulli equation for a streamline
going through the center of the elbow is 
expressed as

EXAMPLE 6–2 The Force to Hold a Deflector Elbow in Place



EXAMPLE 6–2 The Force to Hold a Deflector Elbow in Place

The momentum equation for steady one-
dimensional flow is

The negative result for FRx indicates that the assumed direction is wrong, and it should be reversed. Therefore, 
FRx acts in the negative x-direction.
Discussion :There is a nonzero pressure distribution along the inside walls of the elbow, but since the 
control volume is outside the elbow, these pressures do not appear in our analysis.

EXAMPLE 6–3 The Force to Hold a Reversing Elbow in Place

Determine the anchoring force FR needed 
to hold the elbow in place.

0.3 m
We are neglecting the weight of the elbow 
and the water.

The horizontal force on the flange is 2591 N acting in the negative x-direction (the 
elbow is trying to separate from the pipe). This force is equivalent to the 
weight of about 260 kg mass, and thus the connectors (such as bolts) used must 
be strong enough to withstand this force.



EXAMPLE 6–4 Water Jet Striking a Stationary Plate

Vavg1=20 m/s

10 kg/sm 

After the strike, the water stream splatters off in all
directions in the plane of the plate.

Determine the force needed to prevent the plate from 
moving horizontally due to the water stream.

Assumptions 
1) The water jet is exposed to the atmosphere, and 

thus the pressure of the water jet and the 
splattered water leaving the control volume is 
atmospheric pressure, which is disregarded since 
it acts on the entire system. 

2) The effect of the momentum-flux correction 
factor is negligible, and thus =1.

The momentum equation for steady one-dimensional 
flow

EXAMPLE 6–4 Water Jet Striking a Stationary Plate

Vavg1=20 m/s

10 kg/sm 

(equivalent to the weight of about a 20-kg mass)

Discussion:
- If the control volume were drawn instead along the interface between the water 
and the plate, there would be additional (unknown) pressure forces in the analysis. 
-By cutting the control volume through the support, we avoid having to deal with 
this additional complexity. 
-This is an example of a “wise” choice of control volume.



EXAMPLE 6–5 Power Generation and Wind Loading of a Wind Turbine

A wind generator with a 30-ft-diameter blade span.

The turbine generates 0.4 kW of electric power.

air = 0.076 lbm/ft3

Determine:
(a) the efficiency of the wind turbine–generator unit
(b) the horizontal force exerted by the wind on the 

supporting mast of the wind turbine. 
(c) What is the effect of doubling the wind velocity 

to 14 mph on power generation and the force
exerted? Assume the efficiency remains the 
same.

V1=7 mph

Assumptions 
1) The efficiency of the turbine–generator is independent of wind speed. 
2) The frictional effects are negligible, and thus none of the incoming kinetic energy is 

converted to thermal energy. 
3) The average velocity of air through the wind turbine is the same as the wind velocity 

(actually, it is considerably less—see the discussion that follows the example).

The power potential of the wind is proportional to its kinetic energy

EXAMPLE 6–5 Power Generation and Wind Loading of a Wind Turbine

V1=7 mph

Then the turbine–generator efficiency becomes :



The frictional effects are assumed to be negligible, 
and thus the portion of incoming kinetic energy not 
converted to electric power leaves the wind turbine 
as outgoing kinetic energy.

EXAMPLE 6–5 Power Generation and Wind Loading of a Wind Turbine

V1=7 mph

Then the force exerted by the wind on the mast becomes Fmast = -FR = 31.5 lbf

EXAMPLE 6–5 Power Generation and Wind Loading of a Wind Turbine

V1=7 mph



EXAMPLE 6–5 Power Generation and Wind Loading of a Wind Turbine

Discussion:

The smaller control volume between sections 
3 and 4 encloses the turbine, and A3 =A4 =A and 
V3 = V4 since it is so slim. 
The turbine is a device that causes a pressure 
change, and thus the pressures P3 and P4 are 
different.
The momentum equation applied to the 
smaller control volume gives

Writing Bernoulli Equation for two section (before and after the rotor blades)

EXAMPLE 6–5 Power Generation and Wind Loading of a Wind Turbine



EXAMPLE 6–5 Power Generation and Wind Loading of a Wind Turbine

EXAMPLE 6–6 Repositioning of a Orbiting Satellite

An orbiting satellite has a mass of msat = 5000 kg and is 
traveling at a constant velocity of V0

An attached rocket discharges mf=100 kg of gases from 
the reaction of solid fuel at a velocity Vf =3000 m/s
relative to the satellite.

The fuel discharge rate is constant for 2 s.

Determine :
(a) the acceleration of the satellite during this 2-s period
(b) the change of velocity of the satellite during this time 

period
(c) the thrust exerted on the satellite

Assumptions :
1) There are no external forces acting on the satellite
2) The effect of the pressure force at the nozzle exit is negligible.
3) The mass of discharged fuel is negligible relative to the mass of the satellite



EXAMPLE 6–6 Repositioning of a Orbiting Satellite

The satellite can be treated as a solid body with constant mass

(a)

(b)

(c)

 The velocity change of the satellite during the first 2 s

 The thrust exerted on the satellite is

EXAMPLE 6–7 Net Force on a Flange

Flow rate, Q = 18.5 gal/min

Density of water,  = 62.3 lbm/ft3

The inner diameter of the pipe, D = 0.065 ft

P1,gage = 13.0 psig

Wwater + Wfaucet = 12.8 lbf

Calculate the net force on the flange.

Assumption: The flow at the inlet and at the outlet 
is turbulent and fully developed so that the 
Momentum flux correction factor is about 1.03.



EXAMPLE 6–7 Net Force on a Flange

Then the net force of the flange on the control volume

EXAMPLE 6–7 Net Force on a Flange



Angular Momentum
 Motion of a rigid body can be considered to be the 

combination of
 the translational motion of its center of mass (Ux, Uy, Uz)

 the rotational motion about its center of mass (x, y, z)

 Translational motion can be analyzed with linear 
momentum equation.

 Rotational motion is analyzed with angular 
momentum equation.

Review of Rotational Motion

Angular velocity  is the angular 
distance  traveled per unit 
time, and angular acceleration 
is the rate of change of angular 
velocity.



Review of Rotational Motion

 mrrmarFM 2
tt 

The torque M acting on a point mass m at a normal distance r from the axis 
of rotation is expressed as

The total torque acting on a rotating rigid body about an axis can be
determined by integrating the torques acting on differential masses dm over the
entire body to give

 



  mass

2
mass

2 dmr      dmr      M

I : The moment of inertia of the body about the axis of rotation
(measure of the inertia of a body against rotation)

Then the total angular momentum of a rotating rigid body can be determined by 
integration to be

The moment of momentum, called the angular momentum, of a point mass m 
about an axis can be expressed as H = rmV = r2m

Review of Rotational Motion

Angular momentum
(moment of momentum):  



  mass

2
mass

2 dmr      dmr      H

Newton’s second law : F ma
 

In terms of the rate of change
of linear momentum :

 d mV
F

dt





The counterpart of Newton’s 
second law for rotating bodies: M I

 

In terms of the rate of change of angular momentum :

( )d d dH
M
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  
     

  Angular 
momentum 

equation:



Review of Rotational Motion

Analogy between corresponding
linear and angular quantities

Review of Angular Momentum
 Moment of a force:

 Moment of momentum:

 For a system:

 Therefore, the angular momentum equation can be 

written as: 

: the net torque applied on the system, which is the vector 
sum of the moments of all forces acting on the system

: the rate of change of the angular momentum of the system



The Angular Momentum Equation
Reynolds Transport Theorem (RTT) :

(General form)

The Angular Momentum Equation

( )  ( )  (V. )
cv cs
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General form:

 Approximate form using average properties at inlets and outlets :
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Flow with No External Moments :

The Angular Momentum Equation
 
inout

cv V mrV mr
dt

dH
0






This is an expression of the conservation of angular momentum principle, which 
can be stated as in the absence of external moments, the rate of change of the 
angular momentum of a control volume is equal to the difference between the 
incoming and outgoing angular momentum fluxes.

When the moment of inertia I of the control volume remains constant, the
first term of the above equation simply becomes moment of inertia times
angular acceleration, 

Therefore, the control volume in this case can be treated as a solid body, with a 
net torque of

I

)V mr()V mr(M
outin

bodybody  







This approach can be used to determine the angular acceleration of space vehicles 
and aircraft when a rocket is fired in a direction different than the direction of motion.

EXAMPLE 6–8 Bending Moment Acting at the Base of a Water Pipe

The mass of the horizontal pipe section 
when filled with water is 12 kg per meter 
length

Assumption:

The pipe diameter is small compared to 
the moment arm, and thus we use average 
values of radius and velocity at the outlet.

Determine the bending moment acting at the base of the pipe (point A) and the 
required length of the horizontal section that would make the moment at point A zero.



kg/s 23,56(3m/s) ]4(0,10m))[(1000kg/m 23  /VAm c 

EXAMPLE 6–8 Bending Moment Acting at the Base of a Water Pipe
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The negative sign indicates that the assumed direction for MA is wrong and should 
be reversed. Therefore, a moment of 82.5 Nm acts at the stem of the pipe in the 
clockwise direction.

The length L of the horizontal pipe that will 
cause the moment at the pipe stem to 
vanish is determined to be

EXAMPLE 6–8 Bending Moment Acting at the Base of a Water Pipe
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EXAMPLE 6–9 Power Generation from a Sprinkler System

= 20 l/s

300 rpmn 

The diameter of each jet is 1 cm.

Estimate the electric power produced.

A large lawn sprinkler with four 
identical arms is to be converted 
into a turbine to generate electric 
power by attaching a generator to 
its rotating head.

Assumptions :
1) The flow is cyclically steady (i.e., steady from a frame of reference
rotating with the sprinkler head). 
2) Generator losses and air drag of rotating components are neglected.

 
m/s 63,66

L 1000

1m

4]/ m 0,01 [π

L/s 5 3

2














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jet

nozzle
jet A

V


EXAMPLE 6–9 Power Generation from a Sprinkler System

The angular and tangential velocities of the nozzles are

1min
2 2 (300 rev/min) 31.42 rad/s

60s
n       

 


    m/s 18.85rad/s 31.42 m 0.6  rVnozzle



Then the average velocity of the
water jet relative to the control 
volume (or relative to a fixed
location on earth) becomes

EXAMPLE 6–9 Power Generation from a Sprinkler System

63.66 18.85 44.81 m/sr jet nozzleV V V    
The angular momentum equation about the axis of rotation :
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EXAMPLE 6–9 Power Generation from a Sprinkler System

    1 kW
2 31.42 rad/s  537.7 N m 16.9 kW

1000 N m/sshaft shaftW nT T         
 

Then the power generated becomes :

Discussion:
1) The sprinkler is stuck and thus the angular velocity is zero. The torque developed will be 

maximum in this case since Vnozzle = 0 and thus Vr = Vjet = 63.66 m/s, giving 
Tshaft, max =764 N · m. But the power generated will be zero since the shaft does not rotate.

2)   The shaft is disconnected from the generator (and thus both the torque and power 
generation are zero) and the shaft accelerates until it reaches an equilibrium velocity. Setting 
Tshaft = 0 in the angular momentum equation gives Vr = 0 and thus Vjet = Vnozzle = 63.66 m/s.
The corresponding angular speed of the sprinkler is

  rpm 1013
min 1

s 60

m 0,6 2π
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Homework
18,21,22,25,27,29,33,36,40, 42,43,47,51,53,58,60,66,73


