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Steady swimming of the jellyfish Aurelia aurita. Fluorescent dye
placed directly upstream of the animal is drawn underneath the bell
as the body relaxes and forms vortex rings below the animal as the
body contracts and ejects fluid. The vortex rings simultaneously
induce flows for both feeding and propulsion.




Objectives

 ldentify the various kinds of forces and
moments acting on a control volume

« Use control volume analysis to determine the
forces associated with fluid flow

e Use control volume analysis to determine the
moments caused by fluid flow and the torque
transmitted



6—1 m NEWTON'S LAWS

Newton’s laws: Relations between motions of bodies and the forces
acting on them.

Newton’s first law: A body at rest remains at rest, and a body in
motion remains in motion at the same velocity in a straight path
when the net force acting on it is zero.

Therefore, a body tends to preserve its state of inertia.

Newton’s second law: The acceleration of a body Is proportional to
the net force acting on it and is inversely proportional to its mass.

Newton’s third law: When a body exerts a force on a second body,
the second body exerts an equal and opposite force on the first.

Therefore, the direction of an exposed reaction force depends on the
body taken as the system.

—> —
, = % dV —dmV)
Newton's second law: F = ma= m =
dt dt




Linear momentum or just the momentum of the body:
The product of the mass and the velocity of a body.

Newton’s second law is usually referred to as the

linear momentum equation. . o
Conservation of momentum principle: The

momentum of a system remains constant
V only when the net force acting on it is zero.

Net force

_ _d(m¥)

5 dt
mV
-

Rate of change

of momentum
Linear momentum is the Newton’s second law is also
product of mass and velocity, expressed as the rate of change
and its direction is the of the momentum of a body is

direction of velocity. equal to the net force acting on it. 2



The counterpart of Newtmn s second law for rotating rigid bodies 1is
expressed as M = Id, where M is the net moment or torque applied on the
bcu.l} I 1s the moment of inertia of the body about the axis of rotation, and &
1s the angular acceleration. It can also be expressed in terms of the rate of
change of angular momentum dH Idt as

do dlw) dH

%.
Angular momentum equation: M=la=1 = = (6-2)
dt dt dt
_ dw, dH,
Angular momentum about x-axis: M, =1, f = f
' Codar dar

The conservation of angular Net torque
momentum Principle: The total angular
momentum of a rotating body remains
constant when the net torque acting on it
is zero, and thus the angular momentum do dlIo)
of such systems is conserved. @ at dt

_ dH
- dt

The rate of change of the angular
momentum of a body is equal to Rate of change
the net torque acting on it. of angular momentum




6—2 m CHOOSING A CONTROL VOLUME

A control volume can be selected as any arbitrary
region in space through which fluid flows, and its
bounding control surface can be fixed, moving, and
even deforming during flow.

Many flow systems involve stationary hardware firmly Deformin
. . Tormng
fixed to a stationary surface, and such systems are control volume
best analyzed using fixed control volumes.

-

When analyzing flow systems that are moving or
deforming, it is usually more convenient to allow the
control volume to move or deform.

In deforming control volume, part of the control

surface moves relative to other parts. T T T
I Cv I
Fixed control volume I /;_' : .
Examples of | Ly V.
(a) flxec!’ I o e — |
(b) moving, | :
and I Moving control volume J v
(c) deforming 3 :
X CV i
control — - v

(@) ¥ volumes. (b)



6—-3 m FORCES ACTING ON A CONTROL VOLUME

The forces acting on a control volume consist of

Body forces that act throughout the entire body of the control
volume (such as gravity, electric, and magnetic forces) and

Surface forces that act on the control surface (such as pressure
and viscous forces and reaction forces at points of contact).

Only external forces are considered in the analysis.

Total force acting on control volume: Z F = E F body T E f surface

Control volume (CV) —

4 - _""*\\ J g

‘ av Ry

{: i ‘ H\ i The total force acting on a control
} l 9:-/\'- volume is composed of body

l dr, % dg ¥ forces and surface forces; body
( | ;27 dF.. forceis shown on a differential
‘*n.,_‘ ,-" volume element, and surface

"'""-""'-F_"“"-'"h

force is shown on a differential
Control surface (CS) — surface element.



The most common body force is that of gravity, which exerts a downward force
on every differential element of the control volume.

_:'.
—y " . = = -
Gravitational force acting on a fluid element: dF iy = pg dV
. . . . . —3 -
Gravitational vector in Cartesian coordinates: g=—gk

q
Total body force acting on control volume: 2 Fiogy = pg dV = meyg

u [:"‘”

+ D F

other

]F}J;{,-;'_Ir__”_;{-,:*; 2 F = z !F';Jr;nil} + 2 F pressure + E F-.i-:.;..u;;

total force body force aurface forces

dy

Surface forces are not as simple to
analyze since they consist of both normal
d= g and tangential components.
Normal stresses are composed of
-} - JE. pressure (which always acts inwardly
e s normal) and viscous stresses.
le Shear stresses are composed entirely of

VISCOUS stresses.

o
=

“

=

ﬂthDd}" = dFLT]'U‘-’i[}’ = pg {;'rllv"r

h The gravitational force acting on a differential
P volume element of fluid is equal to its weight; the
axes have been rotated so that the gravity vector q

X, 1 acts downward in the negative z-direction.



0F s ace. tangentn S.urface force acting on a d I;-H_m_m -
A differential surface element: |
dF gyctace, nrarma’],’;f 1?4, dF . . .
e Total surface force acting 2 -
on control surface: 2 Furtace = | cutn
C5
dA
\ . . ; ;
'f:-:rntn:ull‘l Y Z = Z Fooay T E- F i ™ pg dV + | oy ndA
surface \ - L
CV Cs
X
()
’ Total force:
dFiurfﬂrc. tangential — o = o —s
,f’ﬂ‘;‘/ 2 = z F gravity T E IIIT_‘|~'.u~~;=||r:- £ z ‘L'-ic-'_ us * E F--l".ur
nlI'lr:acurt':b;e. normal ,r"f Yoo

dF . - todal force body force surface forces

Nt Co el

When coordinate axes are rotated

S ¥ surface. y (a) to (b), the components of the
\ e/ surface force change, even
Comral VN y though the force itself remains the
surface <T same; only two dimensions are

(b) shown here. 10



A common simplification in the application of Newton’s laws of motion is to
subtract the atmospheric pressure and work with gage pressures.

This is because atmospheric pressure acts in all directions, and its effect cancels
out in every direction.

This means we can also ignore the pressure forces at outlet sections where the
fluid is discharged to the atmosphere since the discharge pressure in such cases
IS very near atmospheric pressure at subsonic velocities.

"'F__R..“*a Bolts —a_ v
SR
:f ? [ e
=Py (gage) E:: ;
With atmospheric With atmospheric 7

pressure considered pressure cancelled out
Atmospheric pressure acts in all L,

directions, and thus it can be ignored ro
when performing force balances since Cross section through a faucet

its effect cancels out in every direction. assembly, illustrating the importance of
choosing a control volume wisely; CV B

IS much easier to work with than CV A.
11



6—-4 m THE LINEAR MOMENTUM EQUATION

Newton’s second law for a system of mass m subjected to net force ZF is
expressed as
—%

n - AV d =
>F=mi=m—=—(mV) (6-13)
(i di

where mV is the linear momentum of the system. Noting that both the den-
sity and velocity may change from point to point within the system, New-
ton’s second law can be expressed more generally as

— i —
F=— V dyv 6-14
2 dfj_ .p ( )

5ys
where p‘r_’; d\/ 15 the momentum of a differential element dV/, which has mass
om = pdV/.

Newton’s second law can be stated as

The sum of all external forces acting on a system is equal to the time rate of
change of linear momentum of the system.

This statement is valid for a coordinate system that is at rest or moves with a
constant velocity, called an inertial coordinate system or inertial reference frame.



dmVy,, g

dt s
) = d |
General: E F=—
ar Jey

The sum of all

external forces | = | of the linear momentum | + | linear momentum out of the
of the contents of the CV

acting on a CV

. . = d |

Fixed CV: Z F=—
dt
dB, d .
= :TJ ob d\/ +I pb( .+ i dA
! ! Y C5

B=r.‘r:1_”' b= i_r:' b=€:’

rl
9 r

d[mﬁ}lm d - A
A TJ oV dV +I oV, - W)dA
t ! (Y Cs

JHF i.l”w"l+ J IJF{V_, ':'T]‘if;4 —

The time rate of change

z—J ,rﬂ-_”}de'-I-J p‘r_"}(ﬁr*ﬁ)dﬂ
dt cv

“C5 ‘Vr T

PV dV + J pV(V - i) dA

CV “CS

The linear momentum equation
is obtained by replacing B in

the Reynolds transport theorem by
P )

the momentum mV, and b by the
momentum per unit mass V.,

The net flow rate of

control surface by mass flow

13



(Pressure
force)

The momentum equation is
commonly used to calculate the
forces (usually on support
systems or connectors) induced
by the flow.

An 180° elbow s;uppurlml by the ground
[n most flow systems, the sumof ' P-4 oV dV + || oV (V
forces SF consists of w eights, oV “Cs
pressure forces, and reaction forces.

Gage pressures are used here since
atmospheric pressure cancels out on
all sides of the control surface. 14

_:|
) dA



SF= J pV (V,-ida Steady Special Cases
csS flow

m = J p(?ﬁ_}mf: pVaeA. Mass flow rate across
A, an inlet or outlet

[ — — —
J pV(V - 1)dA, = pViy A, ‘-f’m =mV,,. Momentum flow rate across
A a uniform inlet or outlet:

&

et =TT
MV, 22 n - 13, ;_‘ng
NN N
\.--/ Fixed RN
/ control \
\ volume ; In a typical engineering
I% o problem, the control volume
may contain many inlets and
iV, avg,] Out?/? i\x outlets; at each inlet or outlet
iV Out we define the mass flow rate
5-Yavg,5

gV aved and the average velocity.

15



1 CV

Nozzle |

I—.- ri
— avg
L.
\
A
b

e

(a) (c)
(b)
Examples of inlets or outlets in which the uniform flow
approximation is reasonable:
(a) the well-rounded entrance to a pipe,
(b) the entrance to a wind tunnel test section, and
(c) a slice through a free water jet in air.

16



Momentum-Flux Correction Factor, S

The velocity across most inlets and outlets is not uniform.

The control surface integral of Eq. 6—17 may be converted into algebraic form using

a dimensionless correction factor g, called the momentum-flux correction factor.
s_d | = = -
E F = o | pV dV + | pVI(V «n)dA (6-17)
1 . __{_I::;

_'{_ ".“

27
{I{

I ‘:1I,|

— = v
PV dV + X, itV = D BiitV g

ot I

. = = A
Momentum flux across an inlet or outlet: J pV(V -n)dA, = BmV,,
A,

Jﬂ p‘-f’{ﬁ iVdA J pV{F i) dA Bis always greater than or equal to 1.

, A, A, Bis close to 1 for turbulent flow and
b= iV = oV, AV not very close to 1 for fully developed
e e e ave laminar flow.
” - j 1 [/ V2
Momentum-flux correction factor: b =— : dA,
j‘: ‘4 J:;W;-__' 17



EXAMPLE 6-1 Momentum-Flux Correction Factor
for Laminar Pipe Flow

Consider laminar flow through a very long straight section of round pipe. It is
shown in Chap. &8 that the velocity profile through a cross-sectional area of
the pipe is parabolic (Fig. 6-15), with the axial velocity component given by

2
V= ZVMg(l - r—) (1)

where R is the radius of the inner wall of the pipe and V,,, is the average
velocity. Calculate the momentum-flux correction factor through a cross sec-
tion of the pipe for the case in which the pipe flow represents an outlet of
the control volume, as sketched in Fig. 6-15.

%

SOLUTION For a given velocity distribution we are to calculate the momen-
tum-flux correction factor.

Assumptions 1 The flow is incompressible and steady. 2 The control volume FIGURE 6-15
slices through the pipe normal to the pipe axis, as sketched in Fig. 6-15. VE]DCit}-’ [J['Df'l]E OVer a cross section
Analysis We substitute the given velocity profile for V in Eq. 6-24 and inte- : : . .
erate, noting that dA, = 2ar dr, of a pipe in which the flow is fully

developed and laminar.

1 v\ 4 (F \?
b [(Darm e [(-Dorar
AcJy \Vayg mR™ ), R For turbulent flow 8 may have an
Defining a new integration variable y = 1 — r2/R? and thus dy = —2r dr/R? insignificant effect at inlets and

(also, y=1atr=0, and y = 0 at r = R) and performing the integration,

the momentum-flux correction factor for fully developed laminar flow outlets, but for laminar ﬂOW'B

e may be important and should not
0 T be neglected. It is wise to include
Laminar flow: p=—4 { yrdy = —4{?} == (3) :8 in all momentum control
J ==

volume problems.

Discussion We have calculated 8 for an outlet, but the same result would
have been obtained if we had considered the cross section of the pipe as an
inlet to the control volume.

18



Steady Flow

Steady linear momentum equation: E b= E pmV — E pmV

Out 1

The net force acting on the control volume during steady flow is equal to the
difference between the rates of outgoing and incoming momentum flows.

= 4, Out
, = v A\ —
BamaVs In If — 3311135
\ N
\ ~
P Fixed N \
/ control

volume

Hlmlﬁ Out ///\‘ — \i .
3 Dlh ~_ 2 F The net force acting on the control

24y volume during steady flow is equal to
S F=YpmV = Y BV the difference between the outgoing
out in and the incoming momentum fluxes.

19



Steady Flow with One Inlet and One Outlet

One inlet and

- . e o
M F=m(B,V,— BV

one outlet . ~
pimV, Water flow CS
o ~ Along x- N T
E F.=m(B,V, . — B,V ,) J _ﬁf‘\?
- 272,x ' coordinate | =
| | BamVs
In = : S rt |
_ uppo
SN | o
L
S,
@ Fixed ™ / (Reaction force)
/ control \ kR .
\ volume fl Fp ;‘P\R:B 1V

b
-~ I;f t I-" \‘\:
_:]

\
= 7 \ BV,
Dut// .
@ P

ST e 117 17
Note: V, = V,even if [V;] = |Vl

_}Bzmh . . The determination by vector
LF = 1i(ByVy - BiVy) addition of the reaction force on
A control volume with only one the support caused by a change
inlet and one outlet. of direction of water.
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Flow with No External Forces

d(m F)m—‘ - .
No external forces: 0 = + E pmV — E BmV

{f‘r ot in

In the absence of external forces, the rate of change of the
momentum of a control volume is equal to the difference between
the rates of incoming and outgoing momentum flow rates.

4.;* —

. AT
- FC"I.-— - ] : C"l-' - 'i-':ﬂ'\-"{

dt dt

- . . 37 i 4
Fihuse = Meyad = EBF”V — EBF?IV

in out

The thrust needed to lift the space
shuttle is generated by the rocket
engines as a result of momentum

change of the fuel as it is accelerated
from about zero to an exit speed of
about 2000 m/s after combustion.




EXAMPLE 6-2 The Force to Hold a Deflector Elbow in Place

A reducing elbow is used to deflect water flow at a rate of 14 kg/s in a hori-
zontal pipe upward 30° while accelerating it (Fig. 6-20). The elbow dis-
charges water into the atmosphere. The cross-sectional area of the elbow is
113 cm? at the inlet and 7 cm? at the outlet. The elevation difference
between the centers of the outlet and the inlet is 30 cm. The weight of the
elbow and the water in it is considered to be negligible. Determine (a) the
gage pressure at the center of the inlet of the elbow and (b) the anchoring
force needed to hold the elbow in place.

SOLUTION A reducing elbow deflects water upward and discharges it to the
atmosphere. The pressure at the inlet of the elbow and the force needed to
hold the elbow in place are to be determined.

Assumptions 1 The flow is steady, and the frictional effects are negligible.
2 The weight of the elbow and the water in it is negligible. 3 The water is
discharged to the atmosphere, and thus the gage pressure at the outlet is
zero. 4 The flow is turbulent and fully developed at both the inlet and outlet
of the control volume, and we take the momentum-flux correction factor to
be 3 = 1.03 (as a conservative estimate) at both the inlet and the outlet.
Properties We take the density of water to be 1000 kg/m?3.

Analysis (3) We take the elbow as the control volume and designate the
inlet by 1 and the outlet by 2. We also take the x- and z-coordinates as
shown. The continuity equation for this one-inlet, one-outlet, steady-flow sys-
tem is M, = m, = m = 14 kg/s. Noting that m = pAV, the inlet and outlet
velocities of water are

22



om 14 kg/s

~ pA, (1000 kg/m*)(0.0113 m?)
1 14 kg/s

V= — 3 -4 7
pAz (1000 kg/m™)(7 % 10 " mY)
We use the Bernoulli equation (Chap. b) as a first approximation to calculate
the pressure. In Chap. 8 we will learn how to account for frictional losses
along the walls. Taking the center of the inlet cross section as the reference

level (z; = 0) and noting that P, = P,,,, the Bernoulli equation for a stream-
line going through the center of the elbow is expressed as

Vi

= 1.24 m/s

= 20.0 m/s

P, Vi P, Vi
—+—+ 5 =—* + In
pg  2g pg  2g
P, — P, = (V%_V‘2+~ )
1 2= P8 Eg Lo a1

P, — P, = (1000 kg/m”)(9.81 m/s”)
20 m/s)” — (1.24 m/s)’ | kKN
rx-:(( ) —« . }+l}.3—[})( )
2(9.81 m/s%) 1000 kg - m/s’
Py goee = 202.2 kKN/m® = 202.2 kPa (gage)

23



(b) The momentum equation for steady flow is

S F=Spav— 3 pmv
out in
We let the x- and z-components of the anchoring force of the elbow be Fg,
and F.,, and assume them to be in the positive direction. We also use gage

pressure since the atmospheric pressure acts on the entire control surface.
Then the momentum equations along the x- and z-axes become

FR_r o P'-EJE‘CA[ = Bllﬂvz cos & — ,Bm‘.ﬂ

where we have set g = 3, = B,. Solving for Fg, and Fg,, and substituting the
given values,

Fp = ﬁm{‘.ﬁ{.‘DSH — V) - Fl.gagcAl

= 1.03(14 kg/s)[(20 cos 30° — 1.24) mfs](ﬁ)
g - m/s’

— (202,200 N/m%)(0.0113 m?)
= 232 — 2285 = —2053 N

. . . - I' N . :
Fgp. = BmV; sin 8 = (1.03)(14 kg/s)(20 sin 30 m.u"s}(] kg - mfsz) 144 N
The negative result for Fg, indicates that the assumed direction is wrong,
and it should be reversed. Therefore, Fg, acts in the negative x-direction.
Discussion There is a nonzero pressure distribution along the inside walls of
the elbow, but since the control volume is outside the elbow, these pressures
do not appear in our analysis. The weight of the elbow and the water in it
could be added to the vertical force for better accuracy. The actual value of
P1, gage Will be higher than that calculated here because of frictional and
other irreversible losses in the elbow.

24



EXAMPLE 6-3 The Force to Hold a Reversing Elbow in Place
The deflector elbow in Example 6-2 is replaced by a reversing elbow such that

® the fluid makes a 180° U-turn before it is discharged, as shown in Fig. 6-21.

The elevation difference between the centers of the inlet and the exit sec-
tions is still 0.3 m. Determine the anchoring force needed to hold the elbow
in place.

SOLUTION The inlet and the outlet velocities and the pressure at the inlet
of the elbow remain the same, but the vertical component of the anchoring
force at the connection of the elbow to the pipe is zero in this case (F,, = 0)
since there is no other force or momentum flux in the vertical direction (we
are neglecting the weight of the elbow and the water). The horizontal compo-
nent of the anchoring force is determined from the momentum eguation
written in the x-direction. Noting that the outlet velocity is negative since it
is in the negative x-direction, we have

Fpr + Py gagell| = Bam(—V2) — BymV) = —Bm(Vz + V))
Solvi ng for F.'Ex and SUDﬁtitUtiﬂg the kKnown ".Ira“J'ES-,
'FRI = _fBHL'I{VI =F FL:I - Pl.gug:"tl

1IN B
= —(1.03)(14 kg/s)(20 + 1.24) mfs](W) —(202.200 N/m*)(0.0113 m?)
g - m/fs

= —306 — 2285 = —2591 N

Therefore, the horizontal force on the flange is 2591 N acting in the nega-
tive x-direction (the elbow is trying to separate from the pipe). This force is
equivalent to the weight of about 260 kg mass, and thus the connectors
(such as bolts) used must be strong enough to withstand this force.
Discussion The reaction force in the x-direction is larger than that of Exam-
ple 6-2 since the walls turn the water over a much greater angle. If the
reversing elbow is replaced by a straight nozzle (like one used by firefighters)
such that water is discharged in the positive x-direction, the momentum
equation in the x-direction becomes

Fe: + P].gagclq-l = }BH’IV: - Em]"?] —* Fpe = JB”T':VI_ Vi) — Pl.gap‘.-‘"‘l]

since both ¥, and V, are in the positive x-direction. This shows the impor-
tance of using the correct sign (positive if in the positive direction and nega-
tive if in the opposite direction) for velocities and forces.

25



: EXAMPLE 6-4 Water Jet Striking a Stationary Plate

: Water is accelerated by a nozzle to an average speed of 20 m/s, and strikes
m 2 stationary vertical plate at a rate of 10 kg/s with a normal velocity of
m 20 m/s (Fig. 6-22). After the strike, the water stream splatters off in all
m directions in the plane of the plate. Determine the force needed to prevent
® the plate from moving horizontally due to the water stream.
||
SOLUTION A water jet strikes a vertical stationary plate normally. The force
needed to hold the plate in place is to be determined.
Assumptions 1 The flow of water at the nozzle outlet is steady. 2 The water
splatters in directions normal to the approach direction of the water jet.

Paim
=
| I CV
I /
V, : |
I W
\ L } F,
0 } |
| I
| |
| |
; | _____ _J
F]ut
X _
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3 The water jet is exposed to the atmosphere, and thus the pressure of the
water jet and the splattered water leaving the control volume is atmospheric
pressure, which is disregarded since it acts on the entire system. 4 The ver-
tical forces and momentum fluxes are not considered since they have no
effect on the horizontal reaction force. 3 The effect of the momentum-flux
correction factor is negligible, and thus g = 1 at the inlet.

Analysis We draw the control volume for this problem such that it contains
the entire plate and cuts through the water jet and the support bar normally.
The momentum equation for steady one-dimensional flow is given as

SFE= gV - 3 pay (1)
oui in

Writing Eq. 1 for this problem along the x-direction (without forgetting the
negative sign for forces and velocities in the negative x-direction) and noting
that vV, , =V, and V, , = O gives

_Fﬁ' = D - _Bﬂi':k‘ﬂ
Substituting the given values,

Fp= pmV; = (1)(10 kg/s)(20 mfs}(i) =200 N
| kg - m/s”

Therefore, the support must apply a 200-N horizontal force (equivalent to
the weight of about a 20-kg mass) in the negative x-direction (the opposite
direction of the water jet) to hold the plate in place.

Discussion The plate absorbs the full brunt of the momentum of the water
jet since the x-direction momentum at the outlet of the control volume is
zero. If the control volume were drawn instead along the interface between
the water and the plate, there would be additional (unknown) pressure forces
in the analysis. By cutting the control volume through the support, we avoid

having to deal with this additional complexity. This is an example of a "wise”
choice of control volume.
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EXAMPLE 6-5 Power Generation and Wind Loading
of a Wind Turbine

|
A wind generator with a 30-ft-diameter blade span has a cut-in wind speed =
(minimum speed for power generation) of 7 mph, at which velocity the tur- ™
bine generates 0.4 kW of electric power (Fig. 6-23). Determine (a) the effi- ™
ciency of the wind turbine—generator unit and (b) the horizontal force exerted a
by the wind on the supporting mast of the wind turbine. What is the effect of g
doubling the wind velocity to 14 mph on power generation and the force g
exerted? Assume the efficiency remains the same, and take the density of air m
to be 0.076 lbm/ft3. |

Analysis Kinetic energy is a mechanical form of energy, and thus it can be
converted to work entirely. Therefore, the power potential of the wind is
proportional to its kinetic energy, which is V2/2 per unit mass, and thus
the maximum power is mV2/2 for a given mass flow rate:

1 4667 ft/
V, = mph}l(—s) = 10.27 fi's
I mph
, =D ; (30 ft)’
= piVids = Vi, = (0.076 Ibmif)(10.27 fus) —— —— = 551.7 Ibmis
. .
W, = ritke; = rﬁ?'

(10.27 fvsf( 1 Ibf )( 1 kW )
= (551.7 Ibm/
: A 32.2 Ibm - fUss/ \737.56 Ibf - fi/s

= L.225 kW

Therefore, the available power to the wind turbine is 1.225 kW at the wind
velocity of 7 mph. Then the turbine—generator efficiency becomes

W 04KkW
Twind wrbine = w7 7] 395 kW

= (L.327 (or 32.7%)

Streamline

atm

!

E

g
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(b) The frictional effects are assumed to be negligible, and thus the portion
of incoming kinetic energy not converted to electric power leaves the wind
turbine as outgoing Kinetic energy. MNoting that the mass flow rate remains
constant, the exit velocity is determined to be

. . VioooWi
ke, = mke|(1 — Mying nubine) — = m?{I — 7Twind turbine) (1)

or
Vo = ViV 1 — g mrtine = (10.27 f/5)V/ 1 — 0.327 = 8.43 ft/s

We draw a control volume around the wind turbine such that the wind is
normal to the control surface at the inlet and the outlet and the entire con-
trol surface is at atmospheric pressure (Fig. 6-23). The momentum eqgua-
tion for steady one-dimensional flow is given as

S F=Sgav - S pmv @)
out in

Writing Eq. 1 along the x-direction and noting that 5 = 1, V, , = ¥V, and
Vo, =V, give

'FH = m'lr"'l — r.'Fer = fh{l-"?z — Vl} (3)
Substituting the known values into Eq. 3 gives

I Ibf
Fo = iV, — V') = (551.7 Ibm/s)(8.43 — 10.27 f/
R =m(Va — Vi) = SN 5) (3z.zlbm-fuf)

= —31.5Ibf

The negative sign indicates that the reaction force acts in the negative x-
direction, as expected. Then the force exerted by the wind on the mast
becomes Fo.g = —Fp = 31.5 Ibf.

The power generated is proportional to V2 since the mass flow rate is pro-
portional to V and the kinetic energy to V2. Therefore, doubling the wind
velocity to 14 mph will increase the power generation by a factor of 23 = 8
to 0.4 x 8 = 3.2 KW. The force exerted by the wind on the support mast is
proportional to V2. Therefore, doubling the wind velocity to 14 mph will
increase the wind force by a factor of 2% = 4 to 31.5 x 4 = 126 Ibf.
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EXAMPLE 6-6 Deceleration of a Spacecraft - 12,000 kg
A spacecraft with a mass of 12,000 kg is dropping vertically towards a m
planet at a constant speed of 800 m/s (Fig. &-24). To slow down the ™
spacecraft, a solid-fuel rocket at the bottom is fired, and cambustmn 800 m/s

gases leave the rocket at a constant rate of 80 kg/s and at a velocity of & a
3000 m/s relative to the spacecraft in the direction of motion of the g
spacecraft for a period of 5 s. Disregarding the small change in the mass m ¥
of the spacecraft, determine (a) the deceleration of the spacecraft during = x
this period, (D) the change of velocity of the spacecraft, and (c) the thrust =

exerted on the spacecraft. | 80 kg/s |

Analysis (a) For convenience, we choose an inertial reference frame that
moves with the spacecraft at the same initial velocity. Then the velocities of
fluid stream relative fo an inertial reference frame become simply the veloci-
ties relative to the spacecraft. We take the direction of motion of the space-
craft as the positive direction along the x-axis. There are no external forces
acting on the spacecraft, and its mass is essentially constant. Therefore, the
spacecraft can be treated as a solid body with constant mass, and the
momentum equation in this case is, from Eq. 6-29,

F[I‘I:I'I.I:il = msp:l;:u-::‘:tft spacecraft E J!:gm]-f Em- .Hl"”]-‘

where the fluid stream velocities relative to the inertial reference frame in
this case are identical to the velocities relative to the spacecraft. Noting that
the motion is on a straight line and the discharged gases move in the posi-
tive x-direction, we write the momentum equation using magnitudes as

d Fspa:a.-: rafi

Mepacecraftspacecraft = Mspacecrafi At - fhg:l.nv_ﬂa.i

Noting that gases leave in the positive x direction and substituting, the
acceleration of the spacecraft during the first 5 seconds is determined to be
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dV, m, 80 kg/s
o spacecrafi _ gas P
Aspacecraft = T = P Vi = m{ +3000 m/fs) = —20 m/s

The negative value confirms that the spacecraft is decelerating in the posi-
tive x direction at a rate of 20 m/s?.

(b) Knowing the deceleration, which is constant, the velocity change of the
spacecraft during the first 5 seconds is determined from the definition of
acceleration to be

ﬂ’l-"mmﬁ ﬂmemﬂf — AV spacecraft — Hmmm!lr = |— 20 lTlJ"E- ]{5 5)

= — 10 m/s

(€) The thrusting force exerted on the space aircraft is, from Eq. 6-29,

L KN ,) = —240 kN
1000 kg - m/s”

The negative sign indicates that the trusting force due to firing of the rocket
acts on the aircraft in the negative x-direction.

Discussion Note that if this fired rocket were attached somewhere on a test
stand, it would exert a force of 240 kN (equivalent to the weight of about

24 tons of mass) to its support in the opposite direction of the discharged
gases,

Fioms = 0 — fiigg Voo = 0 — (80 kg/s)(+3000 ﬂﬂs}(
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= EXAMPLE 6-7  Net Force on a Flange

Water flows at a rate of 18.5 gal/min through a flanged faucet with a par-

tlally closed gate valve spigot (Fig. 6-25). The inner diameter of the pipe at
m the location of the flange is 0.780 in (= 0.0650 ft), and the pressure at
m that location is measured to be 13.0 psig. The total weight of the faucet
® assembly plus the water within it is 12.8 Ibf. Calculate the net force on the
* flange.

Analysis We choose the faucet and its immediate surroundings as the con-
trol volume, as shown in Fig. 6-25 along with all the forces acting on it.
These forces include the weight of the water and the weight of the faucet
assembly, the gage pressure force at the inlet to the control volume, and the
net force of the flange on the control volume, which we call Fp. We use gage
pressure for convenience since the gage pressure on the rest of the control
surface is zero (atmospheric pressure). Note that the pressure through the
outlet of the control volume is also atmospheric since we are assuming
incompressible flow; hence, the gage pressure is also zero through the outlet.
We now apply the control volume conservation laws. Conservation of mass FIGURE 6-25
is trivial h_ere since there is only one inlet and one outlet; namely, the mass Control volume for EIEI.I’I?I]}[E: 67

flow rate into the control volume is equal to the mass flow rate out of the .
with all forces shown; gage pressure

is used for convenience.

control volume. Also, the outflow and inflow average velocities are identical
since the inner diameter is constant and the water is incompressible, and
are determined to be

V v 18.5 gal/min (0.133? rﬁ)(l min)
V,=V,=V=—=—= _ = 12.42 fu's
= A, =DY4  (0.065fy4\ 1 gal 60 s
Also,
. : 0.1337 fi° \ /1 mi
i = pV = (62.3 Ibm/f’)(18.5 gal."min]( )( "‘”‘) — 2.568 Ibm/s
1 gal 60 s
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Mext we apply the momentum equation for steady flow,

SFE=Sgav - S gav i

ot in

We let the x- and z-components of the force acting on the flange be Fg, and
Fg,, and assume them to be in the positive directions. The magnitude of the
velocity in the x-direction is +V, at the inlet, bul zero at the outlet. The
magnitude of the velocity in the z-direction is zero at the inlet, but —V; at
the outlet. Also, the weight of the faucet assembly and the water within it
acts in the —z-direction as a body force. No pressure or viscous forces act on

the chosen (wise) control volume in the z-direction.
The components of Eq. 1 along the x- and z-directions become

Fpr + Py gagel1 = 0 — m(+V))
FHE — Wancet — Woaer = fﬁ{_vﬂ —0
Solving for Fg, and Fy,, and substituting the given values,

Foe = —mV, — P].ga_gcf’il

| Ibf . w(0.780 in)?
= —(2.568 Ibm/s)(12.42 ft/s) = | — (13 Ibffin") —
32.2 Ibm - ft/s"
= —7.20 Ibf
FR‘: = _'ﬁ;lvl + wfauc'eHwah::'
| Ibf
= —(2.568 Ibm/5)(12.42 an"s}l( .,) + 12.8 Ibf = 11.8 Ibf
32.2 Ibm - fitfs"

Then the net force of the flange on the control volume is expressed in vector
form as

—

—% —% —* —>
Fp=Fpii + Fgzk = —-7200 + 11.8k Ibf

From Newton's third law, the force the faucet assembly exerts on the flange
is the negative of Fg,

—& —_ * N
Ffautctmﬂmge = —Fp="7.1200 — 118k Ibf
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6—5 m REVIEW OF ROTATIONAL MOTION
AND ANGULAR MOMENTUM

Rotational motion: A motion during
which all points in the body move in
circles about the axis of rotation.

Rotational motion is described with
angular quantities such as the angular
distance 6, angular velocity o, and
angular acceleration c.

Angular velocity: The angular
distance traveled per unit time.

Angular acceleration: The rate of
change of angular velocity.

B dd B d(l/r) B lﬂ B L
@ dt dt rdet r ~—————

> . The relations between angular
dw d60 1dV a, di )
o = =—=- —— Istance 6, angular velocity o,
dtdt~ rdt r and linear velocity V.

V=rw and a; = roe 34



Newton’s second law requires that there must be a force acting in the
tangential direction to cause angular acceleration.

The strength of the rotating effect, called the moment or torque, is proportional
to the magnitude of the force and its distance from the axis of rotation.

The perpendicular distance from the axis of rotation to the line of action of the
force Is called the moment arm, and the torque M acting on a point mass m at
a normal distance r from the axis of rotation is expressed as

— F = = e
M = rF, = rma, = mr-« Torque Mass, m Moment of inertia. 7
Linear acceleration, @ <—— Angular acceleration, a

M = ’ rla dm = { ’ A ﬁm}f = [ Linear velocity, V <— Angular velocity, &

“mass “mass

Linear momentum -— Angular momentum

| is the moment of inertia of the body my ~— [

about the axis of rotation, which is a
measure of the inertia of a body
against rotation.

_?
Force, F +— anqm:,f}
Femd——M=1I2
: : : _ Moment of force, ﬁ <—— Moment of momentum, I;"
Unlike mass, the rotational inertia of N 5> . o
M=rXF+——H=rXmV

a body also depends on the
distribution of the mass of the body Analogy between corresponding

with respect to the axis of rotation. linear and angular quantities. e




Angular momentum

—

7 o T o™
H = ’ o om = |: ’ r- -‘:'HH}LJ = lw

~mass “mass H = f{_’u
__':|
— . do dlw) dH Angl'”_ar momentum
M=la=1 = —— = —— equation
'[-Ilrlr '[!lrlI '[!|r|I
H=rmV 277n ’ Angular velocity
w = (rad/s)
= rm(rw) 60 versus rpm
‘ = jIEH.ITfL}
=lw w = 27N
- I —-.‘-_hh"‘"-.._
- I =<
-~ L
[‘r | = mMraw ( [ (
\ 1y 4
A
I
\xh“'*--. : - V=rw . \J
[l PR -= Wate = @M = 27aM
|
I
Angular momentum of point mass m The relations between angular
rotating at angular velocity » at velocity, rpm, and the power

distance r from the axis of rotation. transmitted through a shatft. 36



i'j'f;hun = FV = Fro = Mw
HI'_‘H;I“ = wM = 2mnM (W) Shaft power
KE, =3lw” Rotational kinetic energy

During rotational motion, the direction of velocity changes even when its
magnitude remains constant. Velocity is a vector quantity, and thus a change
in direction constitutes a change in velocity with time, and thus acceleration.
This is called centripetal acceleration.

V2 i
a, =— =rw"

r
Centripetal acceleration is directed toward the axis of rotation (opposite direction of
radial acceleration), and thus the radial acceleration is negative. Centripetal
acceleration is the result of a force acting on an element of the body toward the
axis of rotation, known as the centripetal force, whose magnitude is F, = mV?/r.

Tangential and radial accelerations are perpendicular to each other, and
the total linear acceleration is determined by their vector sum:

a = d, + d.
f i 37



6-6 m THE ANGULAR MOMENTUM EQUATION

Many engineering problems involve the moment of the linear momentum of
flow streams, and the rotational effects caused by them.

Such problems are best analyzed by the angular momentum equation, also
called the moment of momentum equation.

An important class of fluid devices, called turbomachines, which include

centrifugal pumps, turbines, and fans, is analyzed by the angular
momentum equation.

\ A force whose line of A
Y

127 action passes through
\ ¢ F point O produces zero SN Sense of the
P moment about point O. <E moment
\H ¢ rsing = a!
\ 0
Direction of A <

rotation .";\
0/

J'ﬁ = ? e ﬁ
M = Frsing The determination X e
o — i i Axis of
The moment of a force F' about a of the direction of rotation S EJ
point O is the vector product of the the moment by the
position vector 7 and F'. right-hand rule.



Moment of Moment of momentum

momentum (system) By g .
— - — — [ — dt b E J oo dV + I pbi¥yn)dd
H=rXmV Hy. = J (r X V)pdV eV s

_ 5YS

‘FH ! f " — — —

: SE-S:_J (7 x V)p av Rate of change of B=H  b=FxV b=FxV

drdt | moment of momentum

Angular momentum i
— . 5Ys ¢ =, =T A
dH,,, equation for a system = | X Vpavs [ Ex D, a

%
2 M= —= ~ v cs
— =
d E‘M - Z(f X F)) The angular momentum equation

f}? ) ] is obtained by replacing B in the
Afeys d - oo = o s = Reynolds transport theorem by the
=— (r X V)pdV + (r X V)p(V,-n)dA S por® U5 .
dt df - s angular momentum A , and b by
the angular momentum per unit
. . mass ¥ X V.
. —> e . = - — AR
General: 2 M =— (r X V)pdV + (r X V)p(V,-n)dA
di Jev Jcs
) ‘ ) The net flow rate of
The sum of all The time rate of change
angular momentum
external moments | = | of the angular momentum | + £l l
_ out of the contro
acting on a CV of the contents of the CV
surface by mass flow
_ oy - d [ L2 I -
Fixed CV: 2 M=— (r X V)pdV + (r X V)p(V - n)dA 39
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Special Cases

During steady flow, the amount of angular momentum within the control
volume remains constant, and thus the time rate of change of angular
momentum of the contents of the control volume is zero.

. — N — —
Steady flow: 2 M= (r X V)p(V, - n)dA

“CS

An approximate form of the angular momentum equation in terms of
average properties at inlets and outlets:

— /

>M ={% (7 X VipdV+ D7 XmV — > TFXmV
i Sov ol 1
."{.’:_*(.f{."lﬁ.‘__,f'f..r}'n',‘ 2 ﬁ - 2.'_ 4 }Tl — E.l_ o ,'11

The net torque acting on the control volume during steady flow is equal to the
difference between the outgoing and incoming angular momentum flow rates.

SM=SrmVv- "3 rmv scalar form of angular
ou in momentum equation
40



Flow with No External Moments

dHey . . 2 S . o7
No external moments: 0= + Z (r XmV)— E (r X mV)
in

dt p—
In the absence of external moments, the rate of change of the angular

momentum of a control volume is equal to the difference between the
Incoming and outgoing angular momentum fluxes.

When the moment of inertia | of the control volume remains constant,
the irst term on the right side of the above equation becomes simply
moment of inertia times angular acceleration. Therefore, the control
volume in this case can be treated as a solid body, with a net torque of

M =1 a=>(FXmV)— D ((FXmV)

body body in out

This approach can be used to determine the angular
acceleration of space vehicles and aircraft when a rocket is
fired in a direction different than the direction of motion.
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Radial-Flow Devices

Radial-flow devices: Many rotary-flow devices such as centrifugal pumps and
fans involve flow in the radial direction normal to the axis of rotation.

Axial-flow devices are easily analyzed using the linear momentum equation.

Radial-flow devices involve large changes in angular momentum of the fluid
and are best analyzed with the help of the angular momentum equation.

Casing
b, -

Impeller
shroud

han @

Impeller
blade

Scroll
Side view Frontal view

Eye

Side and frontal views of a typical centrifugal pump.
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The conservation of mass equation for steady incompressible flow
ll.;"l] = 'L;*'g =V — 2mrb)V, , = 2mrnby)V,,
vV vV

= and Vo, =
27rb, =" 2y,

z M= 2 rmV — 2 ~ny angular momentum

out in equatlon
_ L ~ Euler’s turbine
[pare = m(r, Vo, — Vi)
formula
T = m(raVosin e, — rVysin )
When Vi, = or, V,,= on,
\\\. T'—.J]di[ ideal — ,r”m{,r 2 ‘F%}
[} i
[ volume | ‘ﬁ . ,‘- | Vehatt — shaft =~ = Th shaft w = 27N
I \ '\ N |
AN
1 T / An annular control
. // volume that encloses
TN o the impeller section of
N ” 43

Dttt a centrifugal pump.



: EXAMPLE 6-8 Bending Moment Acting at the Base

= of a Water Pipe

||
= Underground water is pumped through a 10-cm-diameter pipe that consists

m of a 2-m-long vertical and 1-m-long horizontal section, as shown in Fig.
® 6-36. Water discharges to atmospheric air at an average velocity of 3 m/s,
® and the mass of the horizontal pipe section when filled with water is 12 kg
: per meter length. The pipe is anchored on the ground by a concrete base.
@ Determine the bending moment acting at the base of the pipe (point A) and
m the required length of the horizontal section that would make the moment at
m point A zero.

10 cm
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Analysis We take the entire L-shaped pipe as the control volume, and desig-
nate the inlet by 1 and the outlet by 2. We also take the x- and z-coordinates
as shown. The control volume and the reference frame are fixed.

The conservation of mass equation for this one-inlet, one-outlet, steady-
flow system is my = m, = m, and V; = V, = V since A, = constant. The
mass flow rate and the weight of the horizontal section of the pipe are

m = pA,V = (1000 kg/m*)[7(0.10 m)*/4](3 m/s) = 23.56 kg/s

W =mg = (12 kg/m)(1 m)(9.81 mfsz}(—j) =117.7TN
1 kg - m/s”
To determine the moment acting on the pipe at point A, we need to take the
moment of all forces and momentum flows about that point. This is a steady-
flow problem, and all forces and momentum flows are in the same plane.
Therefore, the angular momentum equation in this case is expressed as

M= rmV— > rmV
ot in

where r is the average moment arm, V is the average speed, all moments in
the counterclockwise direction are positive, and all moments in the clock-
wise direction are negative.

The free-body diagram of the L-shaped pipe is given in Fig. 6-36. Noting

that the moments of all forces and momentum flows passing through point A

are zero, the only force that yields a moment about point A is the weight W

of the horizontal pipe section, and the only momentum flow that yields a
moment is the outlet stream (both are negative since both moments are in

the clockwise direction). Then the angular momentum equation about point
A becomes

MA - f‘,W= _.l"zﬂ.‘IVE
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Solving for M, and substituting give
MA — FJW— rgm"?g

= (0.5 m)(118 N) — (2 m)(23.56 kg/s)(3 mr‘s}(m)

= =825N-'m

The negative sign indicates that the assumed direction for M, is wrong and
should be reversed. Therefore, a moment of 82.5 N - m acts at the stem of
the pipe in the clockwise direction. That is, the concrete base must apply a
82.5 N - m moment on the pipe stem in the clockwise direction to counter-
act the excess moment caused by the exit stream.

The weight of the horizontal pipe is w = WIL = 117.7 N per m length.
Therefore, the weight for a length of L m is Lw with a moment arm of
= L/2. Setting M, = 0 and substituting, the length L of the horizontal pipe
that would cause the moment at the pipe stem to vanish is determined to be

0=rW—rmV, —  0=(LI2)Lw — rp,mV,

or
[2r,mV,  |2(2 m)(23.56 keg/s)(3 m/s) ( N ) | =5
= 4| — & | = 1.221IN
V w Y 117.7 N/m kg - m/s>

Discussion Mote that the pipe weight and the momentum of the exit stream
cause opposing moments at point A. This example shows the importance of
accounting for the moments of momentums of flow streams when performing
a dynamic analysis and evaluating the stresses in pipe materials at critical
cross sections.
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: EXAMPLE 6-9 Power Generation from a Sprinkler System

: A large lawn sprinkler with four identical arms is to be converted into a tur-
m bine to generate electric power by attaching a generator to its rotating head,
® as shown in Fig. 6-37. Water enters the sprinkler from the base along the
™ axis of rotation at a rate of 20 L/s and leaves the nozzles in the tangential
: direction. The sprinkler rotates at a rate of 300 rpm in a horizontal plane.
- The diameter of each jet is 1 cm, and the normal distance between the axis
m Of rotation and the center of each nozzle is 0.6 m. Estimate the electric
m power produced.

Electric

——— ] | [ —— —— -

1\ N r=10.6 m\I‘
5 -
A r
v

< !
) hq _ - ~" Mpazzie jet
? Myatal V. T

nw.rle jet

generator nc‘-;.rlel";u
- -F'--'- _--l-\h‘-‘-
mnux‘.{lcljrel i - !,\
.r"'f k\.

4 . Totar

- ey =na \

EJ_II::."I. |l : ‘f / .“. 1
‘\.,' _
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Analysis We take the disk that encloses the sprinkler arms as the control
volume, which is a stationary control volume.

The conservation of mass equation for this steady-flow system is my = my,
= M- Noting that the four nozzles are identical, we have m .. = My/4
or V.. = V.. [/4 since the density of water is constant. The average jet
exit velocity relative to the rotating nozzle is

Voo 5L/s 1 m’
Vir = —t = . = 63.66 m/s
A [7(0.01 m)>4] \1000 L

The angular and tangential velocities of the nozzles are

1 min

w = 2 = 27(300 rev/min) ( ) = 31.42 rad/s

60 s
Vooemte = fo = (0.6 m)(31.42 rad/s) = 18.85 m/sV

Mote that water in the nozzle is also moving at an average velocity of
18.85 m/s in the opposite direction when it is discharged. The average
absolute velocity of the water jet (velocity relative to a fixed location on
earth) is the vector sum of its relative velocity (jet velocity relative to the
nozzle) and the absolute nozzle velocity,

—3 — —3

1i"'rjet = V_iet,r_i_ Vnc':r:;r.le

All of these three velocities are in the tangential direction, and taking the
direction of jet flow as positive, the vector equation can be written in scalar
form using magnitudes as

Viee = Vit — Vaoze = 63.66 — 18.85 = 44.81 m/s
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MNoting that this is a cyclically steady-flow problem, and all forces and
momentum flows are in the same plane, the angular momentum equation

is approximated as > M= > rmV — > rmV, where r is the moment arm,

out in

all moments in the counterclockwise direction are positive, and all moments

in the clockwise direction are negative.

The free-body diagram of the disk that contains the sprinkler arms is given
in Fig. 6-37. Note that the moments of all forces and momentum flows
passing through the axis of rotation are zero. The momentum flows via the
water jets leaving the nozzles yield a moment in the clockwise direction and
the effect of the generator on the control volume is a moment also in the
clockwise direction (thus both are negative). Then the angular momentum
equation about the axis of rotation becomes

—Tohan = _4rﬂ!nnule‘{im or Tean = rmmlal‘ﬁm

Substituting, the torque transmitted through the shaft is

Tohane = MMy Vi = (0.6 m)(20 kg/s)(44.81 mfs}(m) =537 TN-m

since My, = pViga = (1 kg/L)(20 Lis) = 20 kg/s.
Then the power generated becomes

1 kW
1000 N - m/s

Therefore, this sprinkler-type turbine has the potential to produce 16.9 kW
of power.

W = 27T = 0Ty = (31.42 rad/s)(537.7 N - m}(

) = 16.9 KW
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Discussion To put the result obtained in perspective, we consider two limit-
ing cases. In the first limiting case, the sprinkler is stuck, and thus, the
angular velocity is zero. The torque developed is maximum in this case, since

Viozzie = 0. Thus Vi, = Viyy , = 63.66 m/s, giving T4 o = 764 N - m. The

power generated is zero Jsirme the generator shaft does not rotate.

In the second limiting case, the sprinkler shaft is disconnected from the
generator (and thus both the useful torque and power generation are zero),
and the shaft accelerates until it reaches an equilibrium velocity. Setting T,z
= 0 in the angular momentum equation gives the absolute water-jet velocity
(jet velocity relative to an observer on earth) to be zero, 'lr’}et = (0. Therefore,
the relative velocity Vi, , and absolute velocity V... are equal but in opposite
direction. So, the absolute tangential velocity of the jet (and thus torque) is
zero, and the water mass drops straight down like a waterfall under gravity
with zero angular momentum (around the axis of rotation). The angular speed

of the sprinkler in this case is
. o Vigne 63.66m/sf 60s
'I‘I — — —
27 27r  27(0.6 m)\1 min
Of course, the T, .4 = O case is possible only for an ideal, frictionless nozzle
(i.e., 100 percent nozzle efficiency, as a no-load ideal turbine). Otherwise,
there would be a resisting torque due to friction of the water, shaft, and sur-
rounding air.

The variation of power produced with angular speed is plotted in Fig.
6—38. Note that the power produced increases with increasing rpm, reaches
a maximum (at about 500 rpm in this case), and then decreases. The actual
power produced would be less than this due to generator inefficiency
(Chap. 5) and other irreversible losses such as fluid friction within the nozzle
(Chap. 8), shaft friction, and aerodynamic drag (Chap. 11).

) = 1013 rpm
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The variation of power produced with angular
speed for the turbine of Example 6-9.
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Summary

Newton's Laws
Choosing a Control Volume

Forces Acting on a Control Volume
The Linear Momentum Equation

v' Special Cases

v Momentum-Flux Correction Factor, g
v Steady Flow

v Flow with No External Forces

Review of Rotational Motion and Angular Momentum
The Angular Momentum Equation

v' Special Cases
v Flow with No External Moments

v Radial-Flow Devices

52



	Chapter 6� MOMENTUM ANALYSIS OF FLOW SYSTEMS
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Summary

