Chapter 5: Mass, Bernoulli, and

Energy Equations

Introduction

® This chapter deals with 3 equations commonly used in fluid
mechanics
® The mass equation is an expression of the conservation of mass
principle.
® The Bernoulli equation is concerned with the conservation of
kinetic, potential, and flow energies of a fluid stream and their

conversion to each other.

® The energy equation is a statement of the conservation of energy

principle.




Objectives

* After completing this chapter, you should be able to

° Apply the mass equation to balance the incoming and outgoing
flow rates in a flow system.

® Recognize various forms of mechanical energy, and work with
energy conversion efficiencies.

® Understand the use and limitations of the Bernoulli equation,
and apply it to solve a variety of fluid flow problems.
® Work with the energy equation expressed in terms of heads,

and use it to determine turbine power output and pumping
power requirements.

Conservation of Mass

* Conservation of mass principle is one of the most
fundamental principles in nature.

® Mass, like energy, is a conserved property, and it cannot
be created or destroyed during a process.

® For closed systems mass conservation is implicit since the
mass of the system remains constant during a process.

® For control volumes, mass can cross the boundaries which
means that we must keep track of the amount of mass
entering and leaving the control volume.
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Control surface

Mass and Volume Flow Rates

The amount of mass ﬂowmg through a
control surface per unit time is called the
mass flow rate and is denoted M

The dot over a symbol is used to indicate
time rate of change.

Flow rate across the entire cross-sectional
area of a pipe or duct is obtained by
integration

m=[om= [ pv,dA
A A

While this expression for M is exact, it is
not always convenient for engineering
analyses.

Note that both 6 and d are used to indicate differential quantities, but Jis
Ktypically used for quantities (such as heat, work, and mass transfer)

/
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Cross section

~

Average Velocity and Volume Flow Rate

Integral inM can be replaced with average
values of pand V,

Vo = £l j V_dA,

For many ﬂows variation of O is very small:

Volume flow rateV—is given by m= pvavg A:

= [V,dA =V, A =VA
A

Note: many textbooks use Q instead of
for volume flow rate. V_

Mass and volume flow rates are related by

m:pV—




Conservation of Mass Principle

® The conservation of mass
principle can be expressed as

© mo—mh _dmg, (kg/s)

in out dt
® Where min and mout are the total
rates of mass flow into and out of

the CV, and dm_.,,/dt is the rate of
change of mass within the CV.

Conservation of Mass Principle

;"’.;u@\ ““““ \ Total mass within the CV: mcv = J. pdV—

!

i

: dm
1

I

1

Control - 4
L volme©V) Rate of change of mass within the CV: drgcv — i j foloa'a
t

~
h"“'_"‘““‘—--—’

Control surface (CS)

- >
Normal component of velocity: Vn =Vcoséd =V .n

Differential mass flow rate: om = pV dA = p (Vcosﬁ)dA: ye, (\_/)F])j dA

Net mass flow rate : Mo = I5m =_[ pV dA = Ip(V-ﬁ)dA

CSs

Vii=Vcosd>0 for 6<90°(outflow)
=V

cosd<0 for &>90°(inflow) )
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Conservation of Mass Principle

4 dV “““““ . ® For CV of arbitrary shape,
| b 7 C -
i dm ﬁ( ® rate of change of mass within the CV
I dA
I c 1 ’l, v dm d
:\ \rolu?r;:r(nCV) e TCV = a j pdV—
v

"I—f’ ."'I--’

: ® net mass flow rate
Control surface (CS)

My = [ o= pV,dA= [ p(Vri)dA
CS CS CS
® Therefore, general conservation of mass

for a fixed CV is:
d I PO+ jp( *-ﬁ)dA:O
dt Ccv CS

It states that the time rate of change of mass within the control volume plus
the net mass flow rate through the control surface is equal to zero.

. /
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Conservation of Mass Principle

Reynolds Transport Theorem  b=B/m =m/m=1

dB,, d L

_ bdV + b(V+71)dA

dr a | F phCV=n)
CV CS

quys d - =
— = d\V/ + (V+n)dA
ar ar | " pLv-n)
(OAY CS
| o dm,,
The mass of a system is constant, and thus its time derivative is zero. y — O

- at
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Conservation of Mass Principle

Moving or Deforming Control Volumes
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Vo= 5 m/s
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|

V=15 m/s > l\ Control volume
| — [

:\Waterjet |

LI L)) |
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Conservation of Mass Principle

The general conservation of mass relation can also be expressed as

d e dm, e o
Ecjvp d%L:iZn:m—Zm or — _;m—Zm

out out




Steady—Flow Processes

® For steady flow, the total amount of

my =2 kg/s m, = 3 kg/s mass contained in CV is constant.

l l ¢ Total amount of mass entering must

J_ ______________ I_ be equal to total amount of mass

: -i leaving

|

| | . .

| cv | Zm_zm (kg/s)

| : In out

I |

| |

. . 3
. SV--T A (m/s)

iz =My +m2=5kg/S in out

Special Case: Incompressible Flow

Steady, incompressible flow: ZV_ — ZV_ (m3 /S)
in

out

my =2 kg/s my =3 kg/s

Steady, compressible flow

l |

I |

: : my =2 kels
| Cv : V= 0.8 m¥s
| |

| i

T

COmMpressor

.”;’13=I’}:1] +f’}l2=5kg/S

my=2kgls

\ Vi=14ms
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EXAMPLE - Discharge of Water from a Tank
Aiar
W
S - . e _
i Water i The average velocity of the jet is given byV = Zgh
i |
i : Determine how long it will take for the water level
1.2 m=ho —| l in the tank to drop to h=0.6 m from the bottom.
. - | |
| | o dmy,
Iy ot = in — t =
fr[ 1_ i i JDJeL =1.3cm Héﬂ ou dt
e___________} ]
0 I Dy . ] Mout = (pVA) out — P 2ghAJ€t
(A m) RV h
mCV =P - IOAtank
d h 7Dk /4)dh
— p+/2ghA;, :%—) —p1/29h(7zDzjet/4):p( tdtk )
dt _ thank dh
~ DZa 2gh
B y2gh  t=857s=143min (h,=0.6 m)
jdt=ﬂTﬁ - t=ﬁ_ﬁ D t=48.8 min (h,=0
30 Dt 2g i h Jgiz | D, -488min (h,=0m) /
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Mechanical Energy

* Mechanical energy can be defined as the form of energy that can
be converted to mechanical work completely and directly by an ideal
mechanical device such as an ideal turbine.

* Flow P/p, kinetic V?/g, and potential gz energy are the forms of
mechanical energy e, = P/p +V?/g+ gz (J/kg)

® Mechanical energy change of a fluid during incompressible flow
becomes

_ FI _|_V22 _V12
mech
Jo, 2

* In the absence of loses, Ae, , represents the work supplied to the
fluid (Ae_,>0) or extracted from the fluid (4de__, <0).

Ae +9(z,-2) (Jkg)




: Mechanical Energy h

A pump transfers mechanical energy to a fluid,

and
a turbine extracts mechanical energy from a fluid.
@
- * R T Lake Naencrator = 0.95
1862 kW
f — h=50m 7
pump ) J Turbine i Generator \'u
I/ If " ..u
, V h i = 5000 kg/s
W turbine
;. o

For an ideal hydraulic turbine wyine = gh (j/kg)
»Note that we are also assuming ideal flow (no
irreversible losses) through the pipe leading from
the tank to the turbine.

» Therefore, the total mechanical energy of water
at the bottom is equivalent to that at the top.

. /

Mechanical Energy

- P=0
hi ;1 pe = gh v
W ipnae = righ W ooy = rirgh
ﬂl
0 B p=pgh r _L‘
pe=0 i

The mechanical energy of water at the bottom of a container is equal
to the mechanical energy at any depth including the free surface of the
container.




Mechanical Efficiency

® Transfer of e, is usually accomplished by a rotating shaft: shaft
work

® Pump, fan, propulsion: receives shaft work (e.g., from an electric
motor) and transfers it to the fluid as mechanical energy

® Turbine: convertse_, of a fluid to shaft work.

o If ., < 100%, losses have occurred during conversion.
mech ’ g

E E

mech,out mech,loss
Mech = =1-
E E

mech,in mech,in

L y

4 . L )
Pump and Turbine Efficiencies

Fan
= ® In fluid systems, we are usually interested in increasing the
— y ) Y g
o 5% - m@= 0.50 kg/s pressure, velocity, and/or elevation of a fluid.
e ——o
—= ® In these cases, efficiency is better defined as the ratio of
- (supplied or extracted work) vs. rate of increase in
V,=0, V= 12 mis mechanical energy
1=% .
Fr=k —— Mechanical energy increase of the fluid = AE e nig W pumpu
; . pump — . . - . -
AE ot ui v
Nmech, fan = M = L MeChanlcaI energy InpUt W shaft,in W pump
wﬁh:lﬂ. in “’ahul'l. in
_ (0.50 kg/s)(12 m/s)*/2
i i . _ Mechanical energy output ~ Wanatowr W rbine
— turbine — . - -
Mechanical energy decrease of the fluid - \
Thurbine = 0.75 Tl'gn:ncr.nlur =097 gy A E mech, fluid W turbine,e
RibinE T\ Ezele ) e Overall efficiency must include motor or generator
efficiency.
Tl'lurhinc—gcn = nmrhinc’?gcucralur
=0.75x0.97
=0.73

\ /
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Mechanical Efficiency

The mechanical efficiency should not be confused with the motor efficiency
and the generator efficiency.

_ Mechanical power output W shaft out
Tmotor Electric power input

W elect,in

Electric power output W efect out
Mechanical power input W

ngenerator -

shaft,in

A pump is usually packaged together with its motor, and a turbine with its
generator.

The combined or overall efficiency of pump—motor and turbine—generator

combinations : .
_ _ W pump,u AEmech,ﬂuid
npump—motor - ﬂpumpnmotor - -

Welect,in elec,in
W elect,out W elect,out

Uturbine—gen = nturbinengenerator -

W turbine,e ‘AEmech, fluid ‘

/
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Mechanic Efficiency

The lower limit of O percent corresponds to the conversion of the entire
mechanical or electric energy input to thermal energy, and the device in
this case functions like a resistance heater.

Nechamc OF @ resistance heater is 0

A typical resistance heater

~
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EXAMPLE - Performance of a Hydraulic Turbine-Generator

v

= T Lake lgeneraor =095 Assumptions
1862 kW 1) The elevation of the lake remains
fi=30m N 7~ constant.
l metme]:f_@)l 2) The mechanical energy of water
. NI at the turbine exit is negligible.
inlet m = 5000 kg/s \ outlet
€rnecnin — Erech out :%—o = gh =(9.81 m/s” )(50m) = 491 m?/s*=491 j/kg

»The rate at which mechanical energy is supplied to the turbine by the fluid and the
overall efficiency become :

A E et id| = M(€eenin —Eeanonr ) = (5000 ka/s)(0.491 kj/kg) = 2455 kW

770vera|| = nturbine—gen -

Welect,out — 1862 kW = 076
2455 kw

_ nturbine—gen — 0.76

nturbine—gen = nturbinengenerator - 77turbine - 0 95
generator '

= (0.80)(2455 kW) =1964 kW

‘A E mech, fluid

=0.80

A Emech, fluid

k W shaft,out = nturbine

g Mechanical energy balance N

()
Sy
B —

Most fluid flow problems involve mechanical
forms of energy only, and such problems are
T | conveniently solved by using a mechanical
energy balance.

r'/.-_
{ h
A Steady process :

E eenin — E

1 1) mech,in

=AE

mech,out mech,loss

lI<1

Steady flow
=W
=4+ h
Py =Py=Py,
E

Wpump +mgz) = Mgz + Eqech foss

mech, in = Emech, om + ‘Emech. loss

H"rpump =mgh+ Eqach, joss

\ /




Bernoulli Equation

Applying the conservation of linear
momentum principle (Newton’s 2nd law)

(P+dP)dA

Assumption: Viscous effects are negligibly
small compared to inertial, gravitational, and
pressure effects.

ds dz Z FS = ma.S
dx dv 8V 8V ds oV oV
a, = —+V —
dt ot 85 dt ot 0S

The forces acting on a fluid
particle along a streamline.

PdA (P+dP)dA-Wsing = m(av Vﬂj
ot oS

—dPdA- pgdAdsg——pdAd (a_v va—Vj

e —dP - pgdz=p (—ds+Vde» d—P+1d(\/ )+gdz+%ds 0

8 /
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Bernoulli Equation

d—P+1d(\/ )+gdz+—ds 0
e,

(P +dP)dA

V 2
s/ |, Forunsteady, f— +—+0z+ I ——ds = constant
| compressible flow: 2 I
Ild.x' (a Ong a
streamline)

X

2

Steady, incompressible flow: | — + 7 + gz = constant
P

This is the famous Bernoulli Equation, which is commonly used in fluid mechanics
for steady, incompressible flow along a streamline in inviscid regions of flow.

Between any two points on the same streamline:
2 2

. . PV 2 Vo
Steady, incompressible flow: —+—+ 0z, =—+—+ 02

& P22 Y
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Bernoulli Equation

» Bernoulli equation can be viewed as an
Dotentis can be stated as follows:

The sum of the kinetic, potential, and flow

,' g7 = constan energies of a fluid particle is constant along

a streamline during steady flow when the
net compressibility and frictional effects are
o3 negligible.

©

The Bernoulli equation states that during steady, incompressible flow with

negligible friction, the various forms of mechanical energy are converted to
each other, but their sum remains constant.

expression of mechanical energy balance and

~

/

-

Force Balance across Streamlines
p
—+
Yo,

(P+ dP)dA

AsR —> o0 E+ gz = constant
Y2

P =-pQ0z + constant

A c

The variation of pressure with elevation in

steady, incompressible flow along a straight line £ b
is the same as that in the stationary fluid (out ~ Stetionary fluid Flowing fluid
this is not the case for a curved flow section). Py—P,= P,— P,

V? .
j ) dn+ gz =constant  (across streamlines)

~

/




" Limitations on the Use of the Bernoulli

Equation
P V? i i
Bemoulli 4 — 4 gz =constant or AoV, 9z, B Ve, 9z,
Equaton: 5 2 p 2 p 2

1) Steady flow
2)  Frictionless flow

3)  No shaft work (w_ __ =w

pump turbine

:0)

4)  Incompressible flow

if Mach number=

< 0.3 (density variation is negligible)

sound

5)  No heat transfer (The Bernoulli equation should not be used
for flow sections that involve significant temperature change

such as heating or cooling sections) T

{"
—_—7
t /7 oz

@ 6) Flow along a streamline or irrotational flow N/

Streamlines J

" Limitations on the Use of the Bernoulli

. - V 2
Equation Bernoulli - — 1 — 4 gz = constant
Equation: Jo, 2
Sudden Long and narrow
expansion tubes

@H

Flow through
A fan \—/' O £

a valve

@:Q ‘/\/\/\/—‘ jBoundm Iaucrﬁ\
A heating section N

Frictional effects and components that disturb the streamlined structure of
@ flow in a flow section make the Bernoulli equation invalid. /




Static, Dynamic, and Stagnation
Pressures

2
Bernoulli Equation: P + pv7+ gz = constant=Total pressure

The static pressure P (it dges not incorporate any dynamic effects); it
represents the actual thermodynamic pressure of the fluid.

pV?/2 is the dynamic pressure; it represents the pressure rise when the fluid in
motion is brought to a stop isentropically.

pgz accounts for the elevation effects, i.e., of fluid weight on pressure.

The Bernoulli equation states that the total pressure along a streamline is constant.

© y

4 )
Static, Dynamic, and Stagnation

PreSSU reés The sum of the static and dynamic pressures
Is called the stagnation pressure.

Dynamic
pressure \V 2
Piezometer Stagnation
\ _/ pressure, Py, Pstag =P+ P 2 (Pa)
Static P ‘% ) )
pressure, P = _Pitot The stagnation pressure represents the
tube pressure at a point where the fluid is

v, .J J . brought to a complete stop isentropically.

Stagnation
point
2P, P)

stag —
P

V=




4 Static, Dynamic, and Stagnation

Pressures - Pitot Tu

Low

High Correct

be

spaced circumference)

Streamlines Static taps
> —— (several, equally
—_—

- &
—_—
N

Stagnation point

g

k.%.

=

of the static pressure.

| |

{
e, '»-;—-.—'
N@_\S}\\\\
Careless drilling of the static pressure
tap may result in an erroneous reading

i
e

Differential
manometer

A

."/

/

Hydraulic Grade Line (HGL)

and Energy Grade

2

Line (EGL)

P V :
—+—+2z=H =constant (along a streamline)

9 29

»Plpg is the pressure head; it
represents the height of a fluid colum
that produces the static pressure P.

»>V?2/2g is the velocity head; it represents
the elevation needed for a fluid to reach

the velocity V during frictionless free fall.

»z is the elevation head; it represents
the potential energy of the fluid.

©

~

n




" Hydraulic Grade Line (HGL) )
and Energy Grade Line (EGL)

® [t is often convenient to

plot mechanical energy

= Tq_\f\ graphically using heights.
e ‘~\‘< * Hydraulic Gr;de Line
™~ NN
N HGL = — + 7
~~ 1 V2L
EGL sl e £J

k | | ——' L T e

=== =~ |7 = = =™ e Energy Grade Line (or total
[ L' Diffuser 2 3 gy (

I I S .2 ol energy)

P V?
+
P9 29

EGL =

+7Z

" Hydraulic Grade Line (HGL) A

and Energy Grade Line (EGL)

» The EGL is always a distance V?/2g above the HGL.
» For open-channel flow, the HGL coincides with the free surface of the
liquid, and the EGL is a distance V?/2g above the free surface.

r— _/EGL {Horizontal) //EGL
< N i
;A [vane _HGL

.r f ~

re
|-—— —= -

Turbine

Pump i )y .
TN .

W

pump Worble —_———r

A steep jump occurs in EGL and HGL
whenever mechanical energy is added
to the fluid by a pump, and a steep drop
occurs whenever mechanical energy is
\ removed from the fluid by a turbine.

In an idealized Bernoulli-type flow,
EGL is horizontal and its height
remains constant. But this is not

the case for HGL when the flow
velocity varies along the flow. /
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irreversible losses in the flow.

-

Hydraulic Grade Line (HGL)
and Energy Grade Line (EGL)

Negative P

. P=0
AR

/ Positive P -
Positive P\\

» EGL declines continually along the flow direction due to friction and other

» EGL cannot increase in the flow direction unless energy is supplied to the fluid.

/

" The Rise of the Ocean Due to a )

Hurricane

I
F Eye o
Hurricane
g
2)
Calm x @
ocean hy 'f

® level 1

A hurricane is a tropical storm formed
over the ocean by low atmospheric
pressures. As a hurricane approaches
land, inordinate ocean swells (very

high tides) accompany the hurricane. A
Class-5 hurricane features winds in
excess of 155 mph, although the wind
velocity at the center “eye” is very

low.

The wind power of hurricanes is not the
only cause of damage to coastal areas.
Ocean flooding and erosion from excessive
tides is just as serious, as are high waves
generated by the storm turbulence and
energy.




Examples

EXAMPLE 5-5 Spraying Water into the Air

Water is flowing from a hose attached to a water main at 400 kPa gage (Fig.
5-38). A child places his thumb to cover most of the hose outlet, causing a
thin jet of high-speed water to emerge. If the hose is held upward, what is
the maximum height that the jet could achieve?

SOLUTION Water from a hose attached to the water main is sprayed into
the air. The maximum height the water jet can rise is to be determined.

Assumptions 1 The flow exiting into the air is steady, incompressible, and
irrotational (so that the Bernoulli equation is applicable). 2 The water pressure

in the hose near the outlet is equal to the water main pressure. 3 The surface
tension effects are negligible. 4 The friction between the water and air is neg-
ligible. 5 The irreversibilities that may occur at the outlet of the hose due to
abrupt expansion are negligible.

Properties We take the densitv of water to be 1000 keg/m?3.

Examples

Analysis This problem involves the conversion of flow, kinetic, and potential
energies to each other without involving any pumps, turbines, and wasteful
components with large frictional losses, and thus it is suitable for the use of
the Bernoulli equation. The water height will be maximum under the stated
assumptions. The velocity inside the hose is relatively low (V; = 0) and we
take the hose outlet as the reference level (z; = 0). At the top of the water
trajectory V; = 0, and atmospheric pressure pertains. Then the Bernoulli
equation simplifies to

P, V%/O /0_ P, V,%/"O P, Pun
E 5 +2 _E_F@ + 2, — E—E"'Zg
Solving for z; and substituting,
Zj:P| ~ Pam _ P].gage: 400 kPa (1000 N!mz)(l kg-mﬂﬁ)
) g Pg (1000 kg/m*)(9.81 m/s>) \ 1 kPa N
= 40.8 m

Therefore, the water jet can rise as high as 40.8 m into the sky in this case.
Discussion The result obtained by the Bernoulli equation represents the
upper limit and should be interpreted accordingly. It tells us that the water
cannot possibly rise more than 40.8 m, and, in all likelihood, the rise will be
much less than 40.8 m due to irreversible losses that we neglected.

o




Examples

EXAMPLE 5-6 ~ Water Discharge from a Large Tank

A large tank open to the atmosphere is filled with water to a height of 5 m
from the outlet tap (Fig. 5-39). A tap near the bottom of the tank is now
opened, and water flows out from the smooth and rounded outlet. Determine
the water velocity at the outlet.

SOLUTION A tap near the bottom of a tank is opened. The exit velocity of
water from the tank is to be determined.
Assumptions 1 The flow is incompressible and irrotational (except very close
fo the walls). 2 The water drains slowly enough that the flow can be approxi-
mated as steady (actually quasi-steady when the tank begins to drain).
Analysis This problem involves the conversion of flow, kinetic, and potential
energies to each other without involving any pumps, turbines, and wasteful
components with large frictional losses, and thus it is suitable for the use of
the Bernoulli equation. We take point 1 to be at the free surface of water so
that P, = P, (open to the atmosphere), V; = O (the tank is large relative to
the outlet), and z; = 5 m and z; = 0 (we take the reference level at the
center of the outlet). Also, P, = P, (water discharges into the atmosphere).
Then the Bernoulli equation simplifies to

; 0 -

f 2/‘ B

W, v

_vi

7 Z — I =
pg 2 'pg 2g 7 b2

0

)

Water

Examples

Solving for V, and substituting,
Vo= V2gz, = V2(9.81 m/s?)(5 m) = 9.9 m/s

The relation V = \/2gz is called the Toricelli equation.

Therefore, the water leaves the tank with an initial velocity of 9.9 m/s.

This is the same velocity that would manifest if a solid were dropped a dis-
tance of 5 m in the absence of air friction drag. (What would the velocity be
if the tap were at the bottom of the tank instead of on the side?)
Discussion If the orifice were sharp-edged instead of rounded, then the flow
would be disturbed, and the velocity would be less than 9.9 m/s, especially
near the edges. Care must be exercised when attempting to apply the
Bernoulli equation to situations where abrupt expansions or contractions
occur since the friction and flow disturbance in such cases may not be neg-
ligible.

Lh

—

)

Water




Examples

EXAMPLE 5-7 Siphoning Out Gasoline from a Fuel Tank

During a trip to the beach (P, = 1 atm = 101.3 kPa), a car runs out of
gasoline, and it becomes necessary to siphon gas out of the car of a Good
Samaritan (Fig. 5-40). The siphon is a small-diameter hose, and to start the
siphon it is necessary to insert one siphon end in the full gas tank, fill the
hose with gasoline via suction, and then place the other end in a gas can
below the level of the gas tank. The difference in pressure between point 1
(at the free surface of the gasoline in the tank) and point 2 (at the outlet of
the tube) causes the liquid to flow from the higher to the lower elevation.
Point 2 is located 0.75 m below point 1 in this case, and point 3 is located
2 m above point 1. The siphon diameter is 4 mm, and frictional losses in
the siphon are to be disregarded. Determine (a) the minimum time to with-
draw 4 L of gasoline from the tank to the can and (b) the pressure at point
3. The density of gasoline is 750 kg/m3.

SOLUTION Gasoline is to be siphoned from a tank. The minimum time it
takes to withdraw 4 L of gasoline and the pressure at the highest point in
the system are to be determined.

Assumptions 1 The flow is steady and incompressible. 2 Even though the
Bernoulli equation is not valid through the pipe because of frictional losses,
we employ the Bernoulli equation anyway in order to obtain a best-case esti-
mate. 3 The change in the gasoline surface level inside the tank is negligible
compared to elevations z; and z; during the siphoning period.

Praperties The density of gasoline is given to be 750 kg/m?.

-

Gasoline
siphoning
tube

2m

-

Analysis (a) We take point 1 to be at the free surface of gasoline in the
tank so that P, = P, (open to the atmosphere), V; = O (the tank is large
relative to the tube diameter), and z, = O (point 2 is taken as the reference
level). Also, P, = P, (gasoline discharges into the atmosphere). Then the
Bernoulli equation simplifies to

Wow' Hw o w
P-g 2e Zl_&_‘g 22 ) — Zl_zg

Solving for ¥, and substituting,
V, = V2gz, = V2(9.81 m/s?)(0.75 m) = 3.84 m/s

The cross-sectional area of the tube and the flow rate of gasoline are
A=mDY4=7(5% 10 m)¥4 = 1.96 X 10 > m*
V= V,A = (3.84 m/s)(1.96 X 10 °m?) = 7.53 X 10 °m¥s = 0.0753 L/s
Then the time needed to siphon 4 L of gasoline becomes

vV 4L

Al=—m=—————
v 00753 L/s

= RHLE

(b) The pressure at point 3 can be determined by writing the Bernoulli equa-
tion between points 2 and 3. Noting that V, = V3 (conservation of mass), z
=0,and P, = Py,

P, VA P, Vi Pyw P
—2+—2/£+zz/=—3+—¢£+2.3 - Aol
re P8 re 28 P.

Solving for P; and substituting,
P; = Pyn — p8Zs

= 101.3 kPa — (750 kg/m")(9.81 m/s?)(2.75 m)( IN )( 1 kPa )

1kg - m/s?2/\1000 N/m?
K = 81.1 kPa

Examples

Gasoline
siphoning
tube

@

,/{:j\\@
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Discussion The siphoning time is determined by neglecting frictional
effects, and thus this is the minimum time required. In reality, the time will
be longer than 53.1 s because of friction between the gasoline and the tube
surface. Also, the pressure at point 3 is below the atmospheric pressure. |f
the elevation difference between points 1 and 3 is too high, the pressure at
point 3 may drop below the vapor pressure of gasoline at the gasoline tem-
perature, and some gasoline may evaporate (cavitate). The vapor then may
form a pocket at the top and halt the flow of gasoline.

tube

-

Gasoline
siphoning

]

EXAMPLE 5-8 Velocity Measurement by a Pitot Tube

A piezometer and a Pitot tube are tapped into a horizontal water pipe, as
shown in Fig. 541, to measure static and stagnation (static + dynamic)
pressures. For the indicated water column heights, determine the velocity at
the center of the pipe.

SOLUTION The static and stagnation pressures in a horizontal pipe are
measured. The velocity at the center of the pipe is to be determined.
Assumptions 1 The flow is steady and incompressible. 2 Points 1 and 2 are
close enough together that the irreversible energy loss between these two
points is negligible, and thus we can use the Bernoulli equation.

Analysis We take points 1 and 2 along the centerline of the pipe, with point
1 directly under the piezometer and point 2 at the tip of the Pitot tube. This

Examples

is a steady flow with straight and parallel streamlines, and the gage pres-
sures at points 1 and 2 can be expressed as

P, = pg(h, + hy)

P, = pgh, + hy + hy)
Noting that point 2 is a stagnation point and thus V, = 0 and z; = 2, the
application of the Bernoulli equation between points 1 and 2 gives
pVio, P v§/0

. Wy =1
LS4 SR vi_p-p
pg 28 " pg 2

L
F2 26 pg

Substituting the P, and P, expressions gives

Vi _Py— Py _ pglhy+ hy + hy) — pgh, thy _,
28 Pg pg e

Solving for V; and substituting,

— A/ — A/ 2 — 1z
Vi = V2gh; = V2(9.81 m/s7)(0.12 m) = 1.53 m/s

Discussion Note that to determine the flow velocity, all we need is to mea-
sure the height of the excess fluid column in the Pitot tube.

hy=12cm
hy=Tcm
hy =3 cm
Water » , + —V
O O
Stagnation
point




