
Chapter 5:  Mass, Bernoulli, and 
Energy Equations

Introduction
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 This chapter deals with 3 equations commonly used in fluid 
mechanics
 The mass equation is an expression of the conservation of mass 

principle.
 The Bernoulli equation is concerned with the conservation of 

kinetic, potential, and flow energies of a fluid stream and their 
conversion to each other.

 The energy equation is a statement of the conservation of energy 
principle.  



Objectives
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 After completing this chapter, you should be able to 
 Apply the mass equation to balance the incoming and outgoing 

flow rates in a flow system.
 Recognize various forms of mechanical energy, and work with 

energy conversion efficiencies.
 Understand the use and limitations of the Bernoulli equation, 

and apply it to solve a variety of fluid flow problems.
 Work with the energy equation expressed in terms of heads, 

and use it to determine turbine power output and pumping 
power requirements.

Conservation of Mass
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 Conservation of mass principle is one of the most 
fundamental principles in nature.

 Mass, like energy, is a conserved property, and it cannot 
be created or destroyed during a process.  

 For closed systems mass conservation is implicit since the 
mass of the system remains constant during a process.

 For control volumes, mass can cross the boundaries which 
means that we must keep track of the amount of mass 
entering and leaving the control volume.



Mass and Volume Flow Rates

 The amount of mass flowing through a 
control surface per unit time is called the 
mass flow rate and is denoted 

 The dot over a symbol is used to indicate 
time rate of change.

 Flow rate across the entire cross-sectional 
area of a pipe or duct is obtained by 
integration

 While this expression for      is exact, it is 
not always convenient for engineering 
analyses.  
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Note that both  and d are used to indicate differential quantities, but  is
typically used for quantities (such as heat, work, and mass transfer)

Average Velocity and Volume Flow Rate

 Integral in     can be replaced with average 
values of  and Vn

 For many flows variation of is very small: 
 Volume flow rate     is given by

 Note:  many textbooks use Q instead of      
for volume flow rate.

 Mass and volume flow rates are related by 
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Conservation of Mass Principle

 The conservation of mass 
principle can be expressed as

 (kg/s)

 Where       and        are the total 
rates of mass flow into and out of 
the CV, and dmCV/dt is the rate of 
change of mass within the CV.
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Conservation of Mass Principle
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Conservation of Mass Principle

 For CV of arbitrary shape,
 rate of change of mass within the CV

 net mass flow rate

 Therefore, general conservation of mass 
for a fixed CV is:
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It states that the time rate of change of mass within the control volume plus
the net mass flow rate through the control surface is equal to zero.

Conservation of Mass Principle
Reynolds Transport Theorem b=B/m =m/m=1   

The mass of a system is constant, and thus its time derivative is zero. 0sysdm

dt




Moving or Deforming Control Volumes
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Conservation of Mass Principle

Control volume

Velocity of fluid
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Conservation of Mass Principle

The general conservation of mass relation can also be expressed as



Steady—Flow Processes

 For steady flow, the total amount of 
mass contained in CV is constant.

 Total amount of mass entering must 
be equal to total amount of mass 
leaving
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Special Case: Incompressible Flow

Steady, incompressible flow:
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Steady, compressible flow



EXAMPLE - Discharge of Water from a Tank

1.2 m=

(1 m)

= 1.3 cm

The average velocity of the jet is given by 2V gh

Determine how long it will take for the water level 
in the tank to drop to h=0.6 m from the bottom.
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t = 857 s = 14.3 min   (h2=0.6 m)

t = 48.8 min   (h2=0 m)

Mechanical Energy
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 Mechanical energy can be defined as the form of energy that can 
be converted to mechanical work completely and directly by an ideal 
mechanical device such as an ideal turbine.

 Flow P/, kinetic V2/g, and potential gz energy are the forms of 
mechanical energy emech= P/V2/g + gz (J/kg)

 Mechanical energy change of a fluid during incompressible flow 
becomes 

 In the absence of loses, emech represents the work supplied to the 
fluid (emech>0) or extracted from the fluid (emech<0).

 
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A pump transfers mechanical energy to a fluid, 
and
a turbine extracts mechanical energy from a fluid.

Mechanical Energy

turbine

pump

For an ideal hydraulic turbine wturbine = gh (j/kg)
Note that we are also assuming ideal flow (no 
irreversible losses) through the pipe leading from 
the tank to the turbine. 
Therefore, the total mechanical energy of water 
at the bottom is equivalent to that at the top.

Mechanical Energy

The mechanical energy of water at the bottom of a container is equal
to the mechanical energy at any depth including the free surface of the 
container.



Mechanical Efficiency
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 Transfer of emech is usually accomplished by a rotating shaft: shaft 
work 

 Pump, fan, propulsion:  receives shaft work (e.g., from an electric 
motor) and transfers it to the fluid as mechanical energy 

 Turbine:  converts emech of a fluid to shaft work.
 If mech < 100%, losses have occurred during conversion.
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Pump and Turbine Efficiencies

 In fluid systems, we are usually interested in increasing the 
pressure, velocity, and/or elevation of a fluid.

 In these cases, efficiency is better defined as the ratio of 
(supplied or extracted work) vs. rate of increase in 
mechanical energy 

 Overall efficiency must include motor or generator 
efficiency.
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Mechanical Efficiency
The mechanical efficiency should not be confused with the motor efficiency 
and the generator efficiency.
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A pump is usually packaged together with its motor, and a turbine with its
generator. 
The combined or overall efficiency of pump–motor and turbine–generator
combinations .
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The lower limit of 0 percent corresponds to the conversion of the entire
mechanical or electric energy input to thermal energy, and the device in
this case functions like a resistance heater.

Mechanic Efficiency

 of a resistance heater is 0mechanic

A typical resistance heater



EXAMPLE - Performance of a Hydraulic Turbine–Generator
Assumptions
1) The elevation of the lake remains 
constant. 
2) The mechanical energy of water 
at the turbine exit is negligible.

  2 2 2
, , 0 9.81 m/s 50 491 m /s =491 j/kg mech in mech out

P
e e gh m


     

inlet outlet

The rate at which mechanical energy is supplied to the turbine by the fluid and the 
overall efficiency become :
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Mechanical energy balance
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Most fluid flow problems involve mechanical 
forms of energy only, and such problems are 
conveniently solved by using a mechanical 
energy balance.

Steady process :



Bernoulli Equation
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The forces acting on a fluid
particle along a streamline.

Applying the conservation of linear 
momentum principle (Newton’s 2nd law)

Assumption: Viscous effects are negligibly 
small compared to inertial, gravitational, and
pressure effects.

  ss maF
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dt t s dt t s
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   


Bernoulli Equation
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dP V
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dP V V
gz ds

t


   
 

(along a 
streamline)

For unsteady, 
compressible flow:

2

constant
2

P V
gz


  Steady, incompressible flow:

This is the famous Bernoulli Equation, which is commonly used in fluid mechanics 
for steady, incompressible flow along a streamline in inviscid regions of flow.
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2
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1

2
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22
gz

VP
gz

VP



Steady, incompressible flow:

Between any two points on the same streamline:
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Bernoulli Equation

The sum of the kinetic, potential, and flow 
energies of a fluid particle is constant along 
a streamline during steady flow when the 
compressibility and frictional effects are 
negligible.

 Bernoulli equation can be viewed as an 
expression of mechanical energy balance and 
can be stated as follows: 

The Bernoulli equation states that during steady, incompressible flow with 
negligible friction, the various forms of mechanical energy are converted to 
each other, but their sum remains constant.
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Force Balance across Streamlines
2

constant    (across streamlines)
P V

dn gz
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P
 R    constant

                     - constant

As gz

P gz




  

 

The variation of pressure with elevation in
steady, incompressible flow along a straight line 
is the same as that in the stationary fluid (but 
this is not the case for a curved flow section).



Limitations on the Use of the Bernoulli 
Equation
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1) Steady flow
2) Frictionless flow
3) No shaft work (wpump=wturbine=0)
4) Incompressible flow

5) No heat transfer (The Bernoulli equation should not be used 
for flow sections that involve significant temperature change 
such as heating or cooling sections)

6) Flow along a streamline or irrotational flow
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Equation:

sound

V
  number= 0.3   (density variation is negligible)

V
if Mach 
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Limitations on the Use of the Bernoulli 
Equation 2

constant
2

P V
gz


  Bernoulli

Equation:

Frictional effects and components that disturb the streamlined structure of 
flow in a flow section make the Bernoulli equation invalid.



Static, Dynamic, and Stagnation 
Pressures
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2

constan Tott= al pressu e
2

r
V

P gz   Bernoulli Equation :

The static pressure P (it does not incorporate any dynamic effects); it
represents the actual thermodynamic pressure of the fluid.

V2/2 is the dynamic pressure; it represents the pressure rise when the fluid in 
motion is brought to a stop isentropically.

gz accounts for the elevation effects, i.e., of fluid weight on pressure.

The Bernoulli equation states that the total pressure along a streamline is constant.

Static, Dynamic, and Stagnation 
Pressures

2

( )
2stag

V
P P Pa 

The sum of the static and dynamic pressures 
is called the stagnation pressure.

The stagnation pressure represents the 
pressure at a point where the fluid is
brought to a complete stop isentropically.
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Static, Dynamic, and Stagnation 
Pressures - Pitot Tube


)(2 PP

V stag 

Careless drilling of the static pressure
tap may result in an erroneous reading
of the static pressure.

Hydraulic Grade Line (HGL)
and Energy Grade Line (EGL)
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2

constant   (along a streamline)
2

P V
z H

g g
   

P/g is the pressure head; it 
represents the height of a fluid column 
that produces the static pressure P.

V2/2g is the velocity head; it represents 
the elevation needed for a fluid to reach 
the velocity V during frictionless free fall.

z is the elevation head; it represents 
the potential energy of the fluid.



 It is often convenient to 
plot mechanical energy 
graphically using heights.

 Hydraulic Grade Line 

 Energy Grade Line (or total 
energy)

P
HGL z

g
 

2

2

P V
EGL z

g g
  

Hydraulic Grade Line (HGL)
and Energy Grade Line (EGL)

Hydraulic Grade Line (HGL)
and Energy Grade Line (EGL)

 The EGL is always a distance V2/2g above the HGL.
 For open-channel flow, the HGL coincides with the free surface of the
liquid, and the EGL is a distance V2/2g above the free surface.

In an idealized Bernoulli-type flow,
EGL is horizontal and its height
remains constant. But this is not
the case for HGL when the flow
velocity varies along the flow.

A steep jump occurs in EGL and HGL
whenever mechanical energy is added
to the fluid by a pump, and a steep drop
occurs whenever mechanical energy is
removed from the fluid by a turbine.



Hydraulic Grade Line (HGL)
and Energy Grade Line (EGL)

 EGL declines continually along the flow direction due to friction and other
irreversible losses in the flow. 

 EGL cannot increase in the flow direction unless energy is supplied to the fluid.

The Rise of the Ocean Due to a 
Hurricane A hurricane is a tropical storm formed 

over the ocean by low atmospheric
pressures. As a hurricane approaches 
land, inordinate ocean swells (very
high tides) accompany the hurricane. A 
Class-5 hurricane features winds in
excess of 155 mph, although the wind 
velocity at the center “eye” is very
low.

The wind power of hurricanes is not the 
only cause of damage to coastal areas. 
Ocean flooding and erosion from excessive 
tides is just as serious, as are high waves 
generated by the storm turbulence and 
energy.
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