General Energy Equation

® One of the most fundamental laws in nature is the 1st law of
thermodynamics, which is also known as the conservation of
energy principle.

e It states that energy can be neither created nor destroyed during a process; it

can only change forms
" PE, = 10K
— KE,; =0
m Falling rock, picks up speed
Az | as PE is converted to KE.
H‘ |, mIfairresistance is neglected,
4 | "(Oxe,=31 PE + KE = constant

General Energy Equation

o The energy content of a closed system can be
changed by two mechanisms: heat transfer Q_

Qou=3K and work transfer W.
e (Conservation of energy for a closed system

[ - can be expressed in rate form as
I |
I | . . dEsyS d
: AE=(15-3)+6 : Qnet,in +Wnet,in = dt :ajpedv_
| =18kJ I sys
| ' ® Net rate of heat transfer to the system:
: : Wshaft, in= 6 kJ . . .
: 8‘ ! I[\ > Qnet,in = Qin - Qout
L - t 77777 j \f e Net power input to the system:

0. =15k Whetin =Win =Woy
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General Energy Equation

» For simple compressible systems, total energy consists of internal, kinetic, and
potential energies.

2
e=u+ke+ pe:u+v7+gz (i’kg)

Energy Transfer by Heat, O

Thermal energy tends to move naturally in the direction

of decreasing temperature, and the transfer of thermal

energy from one system to another as a result of a Room air
temperature difference is called heat transfer. 25°C

No heat
transfer

General Energy Equation

A process during which there is no heat transfer is called an adiabatic
process.

There are two ways a process can be adiabatic:

1) Either the system is well insulated so that only a negligible amount of heat
can pass through the system boundary,

2) or both the system and the surroundings are at the same temperature and
therefore there is no driving force (temperature difference) for heat transfer.

An adiabatic process should not be confused with an isothermal process.
Even though there is no heat transfer during an adiabatic process, the energy

content and thus the temperature of a system can still be changed by other
means such as work transfer.
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Energy Transfer by Work, W

»An energy interaction is work if it is associated with a force acting
through a distance.

»The time rate of doing work is called power and is denoted by W

Car engines and hydraulic, steam, and gas turbines produce work;

Compressors, pumps, fans, and mixers consume work.

K PUMP HYDRAULIC TURBINE J
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Energy Transfer by Work, W

» Work-consuming devices transfer energy to the fluid, and thus increase the
energy of the fluid.

Afan in a room, for example, mobilizes the air and increases its kinetic energy.

» Work-producing devices extract energy of the fluid, and thus decrease the
energy of the fluid.

A hydraulic turbine in a hydraulic power plant, extracts the mechanical energy of
the water in the river and decreases its kinetic energy.

\_ FAN HYDRAULIC TURBINE
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Energy Transfer by Work, W

A system may involve numerous forms of work, and the total work can be
expressed as

W - Wshaft + W + inscous + Wother

total pressure

»W,,.« IS the work transmitted by a rotating shaft. (e.g. PUMP)

»Wressure IS the work done by the pressure forces on the control surface.
(e.g. piston in a car engine cylinder)

»W,iscous 1S the work done by the normal and shear components of viscous
forces on the control surface (e.g. blades in turbomachines)

»>W e IS the work done by other forces such as electric, magnetic, and surface
tension

.

~
Shaft work

W shaft = a)Tshaft =27 nTshaft

Discharge

Suction

Seal Chamber oo ntrifugal Pump
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P
® Where does expression for pressure work come
| from?
| A . :
il ] ..... ® When piston moves down ds under the influence of
Vil F=PA, the work done on the system is oW, 1o =PAds.
oun al’)/
System * If we divide both sides by dt, we have
(gas in cylinder)
. . ds
é\Npressure = é\Nboundary = PAE = I:)Avpiston
()
e For generalized control volumes:
f"’_“\
e \ . .
Fd - —
oy . 5 oW =—-PdAV_ =—-PdA(V -0
ll' @ \\ P }' pressure n ( )
| dr
] 9 dA “ ® Note sign conventions:
{' System / /' % ® i is outward pointing normal
\\_\ . ’/k ® Negative sign ensures that work done is positive when is
System boundary, A done on the system.
(b)

. /
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Work Done by Pressure Forces

The total rate of work done by pressure forces is obtained by integrating
OW ressure OVET the entire surface A.

W pressure, net in =jéWPressure :—IP(V .n)dAI— Ep(andA
A AP

~
mass flow through
control surfaces




g Energy Transfer to the system by

Work and Heat

The net power transfer can be expressed as

: . . . - -
W netin — W shaft,netin +W pressure,netin — W shaft,netin —J P(V . njdA
A

Then the rate form of the conservation of energy relation for a closed system
becomes

dE

sys

Q net in +W shaft,netin +W pressure,netin — dt

\

General Energy Equation

To obtain a relation for the conservation of energy for a control volume, we apply
the Reynolds transport theorem

dES'-‘S d I V) F _&:Il'.l‘l-"
o AV, 1) d
dt dt weT e
JC‘.‘ - EE
C
B=E b=e b=e
1 J '
,ﬂrE ok r.'!r —
ﬂr:* — — ep dV + 'E’F“;?r *n)dA
= Yoy Y5

e=U+ke+pe=u+V?/2+gz (J/KQ)

~
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General Energy Equation

The general form of the energy equation that applies to fixed, moving, or deforming
control volumes becomes

Qnetin+W$haﬂ.net in ‘|‘W pressure,net in = i I e,OdV—-}— f e p(V . n)dA
dt o, J /

~
the mass flow rate
through area element dA

The net rate of energy The time rate of The net flow rate of
transfer into a CV by | = | change of the energy | + | energy out of the control
heat and work transfer content of the CV surface by mass flow

W pressure, net in = — Ep(Vr njdA ‘
A P

Qnetin+Wshaft,net in :i J- epdV—+ J. E—|-e p(vrnjdA
dt s, cs\ P

General Energy Equation

»>The term P/p = wy,,, is the flow work, which is the work associated with
pushing a fluid into or out of a control volume per unit mass.

»The pressure work along the portions of the control surface that coincide with
nonmoving solid surfaces is zero.

»Pressure work for fixed control volumes can exist only along the imaginary
part of the control surface where the fluid enters and leaves the control volume,
i.e., inlets and outlets.

General energy equation for fixed volume :

Qnetin+Wshaft,net in :i j epdV—+ I E+e p(V njdA
dt &, cs\ P




General Energy Equation

Qnetin-l-Wshaft,net in _d f epdV-+ J.(E-FEJIO(\;),F]))CIA
dt ¢, cs\ P

If P/pte is nearly uniform across an inlet or outlet, we can simply take it outside

the integral.
\ Qnel in
- = Out

Ta=a

o out »
;j;;g§ S energyo

y Fixed k

control “]

- > /
m: p(andAc ]V volume ¥
] P~

Mip

-~
/V\
energy; -
" _Om //. QL‘LR\\ I'.'fsh:ai'l.nclin
Moyt » )
ENETgY oy Z:::"g}-
out

Qnetin+Wshaft,net in :% J- epdV—+Zm(E+ej _Zm£5+ej
Ccv in

out P P

/

General Energy Equation
e=U+ke+pe=u+V?3/2+9z (Jkg)

- - d (P V2 (P V2
A+ Wshattnetin =— | €odV-+ Y M| —+U+—+0QZ |[—-) M| —+U+—+02
Qnetm haft,net dtc‘[/ P Z (p 2 g ] %: [p 2 g ]

out

Enthalpy : h=u+ P (J/kg)
0

. , 2 , 2
Qnetin+Wshaﬂ,netin =ijepd\/—+2m h+V—+ gz —Zm h+V—+ 0z
dt s, 2 n 2

out

Above equations are fairly general expressions of conservation of energy

But their use is still limited to fixed control volumes, uniform flow at inlets and
outlets, and negligible work due to viscous forces and other effects.

~




Energy Analysis of Steady Flows
Qnetin F Woatt net in —Zm[ +—+ gzj Zm( +—2+ gzj

out

® For steady flow, time rate of change of the energy content of
the CV is zero.

® This equation states: the net rate of energy transfer to a CV by
heat and work transfers during steady flow is equal to the difference
between the rates of outgoing and incoming energy flows with
mass.

© y
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Energy Analysis of Steady Flows

* For single-stream devices,

mass flow rate is constant.

. _ . VAIRVE
Q retin +W shaftnetin = m(hz —-h +%+ g(zz B ZI)J

mQ‘:, Vi +gz , V2
{{ \l Onet,in T Wahatt, net,in h o hl + +J (Zz - 21)
N
2 2
G>\/ Fixed e W RV 7 = P,V 7
e control \ shaft, net,in +_+7+ 9z, = —+7+ 9z, -I-(U2 —Uu, - qnet,in)
( volume Py P

__ad \
. // @ These relations are valid for both compressible

+ W, . . .
Onetin+ Wepat, netin and incompressible flows.

V3
nlh, +——+ »39)
m(rg 2 &% J




Energy Analysis of Steady Flows

2 2
Pl Vl PZ VZ
Wehatt,in T T 2 +0Z = + 2 +0Z, + (u2 —U - qnet,in)
mechanieg\I energy mechanicarenergy
input to the system output from the system

If the flow is ideal with no irreversibilities such as friction, the total mechanical
energy must be conserved, and the term in parentheses (U, - U; - (¢ i,) MUst

equal zero.
0.7 kg/ls
—)
Mechanical energy loss: Cimechyloss = Uz ~ Uy — Qegin e
Au=0.84 klikg
AT=02°C
For single-phase fluids (a gas or a liquid) :
N,
Uy - Uy =Cy(T,-Ty) __/J::-, » W
M pump = 0.70
c, : the constant-volume specific heat. t

k Water /

~
Energy Analysis of Steady Flows

The steady-flow energy equation on a unit-mass basis can be written conveniently
as a mechanical energy balance as

emech,in = emech,out + emech,loss
2 2
W +Lt+-L+gz, =—2+-2+0gz,+e
shaft ,netin 2 g 1~ 2 g 2 mech,loss
P1 P>
Wshaft, netin — Wshaft, in Wshaft, out — Wpump ~ Wiurbine

The mechanical energy balance can be written more explicitly as
2 2

RL Vl PZ V2
—+7+gzl+w ——+7+g22+wt +€e

urbine mech,loss

pump
P P>

emech,loss Is the total mechanical power loss per unit mass, which consists of
pump and turbine losses as well as the frictional losses in the piping network.

\ /
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Energy Analysis of Steady Flows

By convention, irreversible pump and turbine losses are treated separately from
irreversible losses due to other components of the piping system.

V.’ P, V.)°
! —2 +-—*+2z,+h
29 29 P9 29

In terms of heads:

1 pump,u wrbine.e T N (M)

hoump,u - Useful head delivered to the fluid by the pump
Nwrbine e - €Xtracted head removed from the fluid by the turbine

h, : irreversible head loss between 1 and 2 due to all components of the piping
system other than the pump or turbine

Energy Analysis of Steady Flows

® Divide by g to get each term in units of length

i +V12 +Z +hpump ¥ +V22 +Z,+h,..+h
£.9 29 £-.9 29

Magnitude of each term is now expressed as an equivalent column

height of fluid, i.e., Head

W Control volume Wiurbine

o] L.

E

mech loss,
trbine

Ernech loss, pump

""mcuh fluid, out

£

mech fufd, i

A

% .
\ _V Emuch loss, piping /




”Special Case: Incompressible Flow with
No Mechanical Work Devices and
Negligible Friction

il V12+z+/_ s 22+z+% W
2

g
,019 No pump No turbine Negligible
friction
RV P, V) P V?
Bernoulli L+ 47 =—2+-2+7, or —+—+2z=constant
Equation — pg  2g pY 29 pY 29
Kinetic Energy Correction Factor, a
A Vir)
'.\ pa for fully developed laminar pipe flow, o =2
7 _" for fully developed turbulent pipe flow, o =1.04-1.11
m=pVy A p = constant
KE,, = Jke:‘;m L ,L— V2 (r)[pVir) dA]
= % il [ V3(r) dA
| -2 1 3
KEmg_ 5 Vﬂ'rg_ ? pAV 40
_ KE V(r)
= KE‘mﬁ I[ (—m'g) dA
When the kinetic energy correction factors are included, the energy equations for
steady incompressible flow become
Pl V12 PZ V22
K pg+al 2g +Zl+hpump,u :E+a2£+22+hturbine,e+hL J
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Examples

EXAMPLE 5-12 Pumping Power and Frictional Heating
ina Pump

The pump of a water distribution system is powered by a 15-kW electric Water
motor whose efficiency is 90 percent (Fig. 5-54). The water flow rate 50 LJs
through the pump is 50 L/s. The diameters of the inlet and outlet pipes are

the same, and the elevation difference across the pump is negligible. If the 300 4pa
pressures at the inlet and outlet of the pump are measured to be 100 kPa
and 300 kPa (absolute), respectively, determine (a) the mechanical effi-
ciency of the pump and (b) the temperature rise of water as it flows through
the pump due to the mechanical inefficiency.

Mmotor = 90%

Motor
15 kW

SOLUTION The pressures across a pump are measured. The mechanical
efficiency of the pump and the temperature rise of water are to be deter-
mined. T
Assumptions 1 The flow is steady and incompressible. 2 The pump is driven

by an external motor so that the heat generated by the motor is dissipated to

the atmosphere. 3 The elevation difference between the inlet and outlet of

the pump is negligible, z7 = z,. 4 The inlet and outlet diameters are the

same and thus the inlet and outlet velocities and kinetic energy correction

factors are equal, V; = V, and a; = a,.

Properties We take the density of water to be 1 kg/L = 1000 kg/m? and its

specific heat to be 4.18 kl/kg - °C.

- /
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EXAMPLE 5-12 Pumping Power and Frictional Heating : Exa m pIeS

in a Pump !
Analysis (a) The mass flow rate of water through the pump is
i = pV = (1 kg/L)(50 L/s) = 50 kg/s Water

The motor draws 15 kW of power and is 90 percent efficient. Thus the

mechanical (shaft) power it delivers to the pump is 300 kPa

WFumF. shaft = T?mmorwe]ecm'c = (0.90)(15 kW) = 13.5 kW Mmotor = 90%

Motor
15 kW

To determine the mechanical efficiency of the pump, we need to know the
increase in the mechanical energy of the fluid as it flows through the pump,
which is 100 kPa

AE ek, uid = E mech, out — E mech,in = M ? + 0> + gz —m F + ®1 + 8%
Simplifying it for this case and substituting the given values,

. (P, — p,) (300 — 100) kPa)( 1k )
AE :m( = (50 kg/s = L3
mech, fluid p ( & 1000 kg;"m3 1 kPa - m?

Then the mechanical efficiency of the pump becomes

Wpump‘u . AEmech_ﬂui.d _ 10 kW

Npump = — : =
pump Wyump, shar Wpump.sh - 13.5 kW

=0.741 or 74.1%
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EXAMPLE 5-12 Pumping Power and Frictional Heating

ina Pump

(b) Of the 13.5-kW mechanical power supplied by the pump, only 10 kW is
imparted to the fluid as mechanical energy. The remaining 3.5 kW is con-
verted to thermal energy due to frictional effects, and this “lost” mechanical
energy manifests itself as a heating effect in the fluid,

Emach.]u-ss = Wpump, shaft AlE..me::h.l]u'uj =135 — 10 = 3.5kW

The temperature rise of water due to this mechanical inefficiency is deter-
mined from the thermal energy balance, E o 10s = mluy — ) = mcAT.
Solving for AT,

Emach, loss _ 3.5 kW

= = 0.017°C
mc (50 kg/s)(4.18 kJ/ kg - °C)

AT =

Therefore, the water will experience a temperature rise of 0.017°C due to
mechanical inefficiency, which is very small, as it flows through the pump.
Discussion In an actual application, the temperature rise of water will prob-
ably be less since part of the heat generated will be transferred to the casing
of the pump and from the casing to the surrounding air. If the entire pump
motor were submerged in water, then the 1.5 kW dissipated to the air due to
motor inefficiency would also be transferred to the surrounding water as
heat. This would cause the water temperature to rise more.

Examples\

300 kPa

=90%

f] motor

Motor
15 kW

e
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EXAMPLE 5-13 Hydroelectric Power Generation from a Dam

In a hydroelectric power plant, 100 m3/s of water flows from an elevation of
120 m to a turbine, where electric power is generated (Fig. 5-55). The total
irreversible head loss in the piping system from point 1 to point 2 (excluding
the turbine unit) is determined to be 35 m. If the overall efficiency of the
turbine—generator is 80 percent, estimate the electric power output.

SOLUTION The available head, flow rate, head loss, and efficiency of a
hydroelectric turbine are given. The electric power output is to be determined.
Assumptions 1 The flow is steady and incompressible. 2 Water levels at the
reservoir and the discharge site remain constant.

Properties We take the density of water to be 1000 kg/m?3.

Analysis The mass flow rate of water through the turbine is
i = pV = (1000 kg/m*)(100 m'/s) = 10° kg/s

We take point 2 as the reference level, and thus z, = 0. Also, both points 1
and 2 are open to the atmosphere (P, = P, = P,,.) and the flow velocities
are negligible at both points (V, = V, = 0). Then the energy equation for
steady, incompressible flow reduces to

% 0 .0
4 + lklurl:vine,a:' + hL —

B (1 -
;Z"'ﬂ'lzg"'zl F =_-"+ﬂ'25§+32

Riscbine,e = 21 — Iy,
Substituting, the extracted turbine head and the corresponding turbine
power are

h =z —h, =120-35=85m

. _ . . 1 ki/kg
Wturbine.r = mghtwbine,: = (10 kg"fs)(ggl WS_)(SS m) m = 83,400 kW

turbine, ¢

Therefore, a perfect turbine—generator would generate 83,400 kW of elec-
tricity from this resource. The electric power generated by the actual unit is

W, = (0.80)(83.4 MW) = 66.7 MW

W

electric T]’u.lrhirje—gerj turbine, ¢
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EXAMPLE 5-14 Fan Selection for Air Cooling of a Computer

A fan is to be selected to cool a computer case whose dimensions are 12 cm

X 40 cm % 40 cm (Fig. 5-56). Half of the volume in the case is expected Streamline
to be filled with components and the other half to be air space. A b-cm- — \Z @ @ Wotect
diameter hole is available at the back of the case for the installation of the '---..J

fan that is to replace the air in the void spaces of the case once every sec-
ond. Small low-power fan—-motor combined units are available in the market
and their efficiency is estimated to be 30 percent. Determine (a) the wattage
of the fan—motor unit to be purchased and (b) the pressure difference across
the fan. Take the air density to be 1.20 kg/m?3.

SOLUTION A fan is to cool a computer case by completely replacing the air
inside once every second. The power of the fan and the pressure difference
across it are to be determined.

Assumptions 1 The flow is steady and incompressible. 2 Losses other than
those due to the inefficiency of the fan—motor unit are negligible (h; = 0).
3 The flow at the outlet is fairly uniform except near the center (due to the
wake of the fan motor), and the kinetic energy correction factor at the outlet
is 1.10.

Properties The density of air is given to be 1.20 kg/m?.

-

Analysis (a) Noting that half of the volume of the case is occupied by the
components, the air volume in the computer case is

= (Void fraction)(Total case volume)

= 0.5(12 cm X 40 cm X 40 cm) = 9600 cm’

[Slreamllne
.V 9600 cm’ N D Wetea
U=E=Tm=9600cm3!s=9.6x10‘3m3!s ® @ )¢

= pV = (1.20 kg/m*)(9.6 X 10> m¥/s) = 0.0115 kg/s

7D*  w(0.05 m)? L
A=——=——(—=19x10"m

V96X 10 m¥s
Ve—=""T—"—"—"=490m/s
A 196 %10 m?

We draw the control volume around the fan such that both the inlet and the
outlet are at atmospheric pressure (P, = P, = P,), as shown in Fig. 5-56,
and the inlet section 1 is large and far from the fan so that the flow velocity
at the inlet section is negligible (V; = 0).

(enly’and the'energy eqliation) (Eq. 5-76) simplifies to

(P| V2 . P V2 A0
m(_pi + (1‘|7 +ﬂ2() + Wfan = m(f + ‘32? + gZ/’) + Wturbine + Emech]u-ss.t’an
Solving for W[an = Emech o o = Wfan‘u and substituting,
W Vi 0.0115k 1.10 (4.90[11!5)2( LN )—0152W
fan, u maZ ( ng)( ) 2 1 kg . ]TIJ'Sz — s

Then the required electric power input to the fan is determined to be

. W, 0.152 W
Wiy = —— b = = 0.506 W
T fan-motor 0.3
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(b) To determine the pressure difference across the fan unit, we take points
3 and 4 to be on the two sides of the fan on a horizontal line. This time
again zz; = Z, and V3 = V, since the fan is a narrow cross section, and the
energy equation reduces to

. P3 . . P4 - . . P4 - P3
m;“‘_wran:m;_‘_Emhloss,fan - Wfan.u:m p
Solving for P, — P; and substituting,
W, 1.2 kg/m3)(0.152 W) (1 Pa - m’
P4—P3=p .fan.u:( gf }( )( )=]5.3Pil
m 0.0115 kg/s 1 Ws

Discussion The efficiency of the fan-motor unit is given to be 30 percent,
which means 30 percent of the electric power W,,_,. consumed by the unit
is converted to useful mechanical energy while the rest (70 percent) is
*lost” and converted to thermal energy.

// ““

:’;'j\
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Streamline
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EXAMPLE 5-15 Head and Power Loss During Water Pumping

Water is pumped from a lower reservoir to a higher reservoir by a pump that
provides 20 kW of useful mechanical power to the water {Fig. 5-57). The
free surface of the upper reservoir is 45 m higher than the surface of the
lower reservoir. If the flow rate of water is measured to be 0.03 m?fs, deter-
mine the irreversible head loss of the system and the lost mechanical power
during this process.

( 0

P, vin 0 :
L Eh 1
m(}—-i-ﬂf.? +ng)+wp,,mp

/ 2 20
c P.b V2/| o
:m(P+G2_ + 82 | + Winhine

mech, loss

0 -
+E

mech, loss

Wpump = gz, + E - Emach, loss Wpump — Mgz,

Substituting, the lost mechanical power and head loss are determined to be

: _ _ 2 1IN 1 kW
E necn 1oss = 20 KW — (30 kg/s)(9.81 m/s7)(45 m)(1 kg - m‘r_sz)(mm N - m.fs)

= 6.76 KW
Noting that the entire mechanical losses are due to frictional losses in piping
and thus £ =F the irreversible head loss is determined
to be

mech, loss mech, loss, piping?

E mech loss, piping
h L= =

6.76 kW

1 kg - m/s

1000 N - m/s

g

o

(30 kg/s)(9.81 m/s?)

(

1IN

)

1 kW

) =23.0m




