
Chapter 3: Steady Heat 
Conduction

Objectives
When you finish studying this chapter, you should be able to:
• Understand the concept of thermal resistance and its 

limitations, and develop thermal resistance networks for 
practical heat conduction problems,

• Solve steady conduction problems that involve multilayer 
rectangular, cylindrical, or spherical geometries,

• Develop an intuitive understanding of thermal contact 
resistance, and circumstances under which it may be 
significant,

• Identify applications in which insulation may actually increase 
heat transfer,

• Analyze finned surfaces, and assess how efficiently and 
effectively fins enhance heat transfer, and

• Solve multidimensional practical heat conduction problems 
using conduction shape factors.



Steady Heat Conduction in Plane 
Walls

1) Considerable temperature difference

between the inner and the outer 

surfaces of the wall (significant 

temperature gradient in the x

direction).

2) The wall surface is nearly isothermal.

Steady one-dimensional modeling approach is 
justified.

• Assuming heat transfer is the only energy interaction 
and there is no heat generation, the energy balance 
can be expressed as

or

The rate of heat transfer through the 
wall must be constant (                           ).
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• Then Fourier’s law of heat conduction for the wall 
can be expressed as

• Remembering that the rate of conduction heat transfer 
and the wall area A are constant it follows

dT/dx=constant

the temperature through the wall varies linearly with x.

• Integrating the above equation and rearranging yields  
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Thermal Resistance Concept-
Conduction Resistance

• Equation 3–3 for heat conduction through a 
plane wall can be rearranged as

• Where Rwall is the conduction resistance
expressed as 
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Analogy to Electrical Current Flow
• Eq. 3-5 is analogous to the relation for electric current 

flow I, expressed as

Heat Transfer Electrical current flow

Rate of heat transfer  Electric current

Thermal resistance  Electrical resistance

Temperature difference  Voltage difference
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Thermal Resistance Concept-
Convection Resistance

• Thermal resistance can also be applied to convection 
processes.

• Newton’s law of cooling for convection heat transfer 
rate (                        ) can be rearranged as

• Rconv is the convection resistance
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Thermal Resistance Concept-
Radiation Resistance

• The rate of radiation heat transfer between a surface and 
the surrounding
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Thermal Resistance Concept-
Radiation and Convection Resistance
• A surface exposed to the surrounding might involves 

convection and radiation simultaneously.
• The convection and radiation resistances are parallel 

to each other.
• When Tsurr≈T∞, the radiation 

effect can properly be 
accounted for by replacing h
in the convection resistance
relation by
hcombined = hconv+hrad (W/m2K)

(3-12)



Thermal Resistance Network
• consider steady one-dimensional heat transfer 

through a plane wall that is exposed to convection on 
both sides.

• Under steady conditions we have

or

Rate of
heat convection

into the wall

Rate of
heat conduction
through the wall

Rate of
heat convection
from the wall

= =

(3-13)

 

 
1 ,1 1

1 2
2 2 ,2

Q h A T T

T T
kA h A T T

L





  


 



Rearranging and adding
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• It is sometimes convenient to express heat transfer 
through a medium in an analogous manner to 
Newton’s law of cooling as

• where U is the overall heat transfer coefficient.

• Note that 
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Multilayer Plane Walls

• In practice we often encounter plane walls that consist 
of several layers of different materials.

• The rate of steady heat transfer through this two-layer
composite wall can be expressed through Eq. 3-15 
where the total thermal 

resistance is
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Thermal Contact Resistance
• In reality surfaces have some roughness.
• When two surfaces are pressed against each other, the 

peaks form good material contact but the valleys form 
voids filled with air. 

• As a result, an interface contains 
numerous air gaps of varying sizes 
that act as insulation because of the 
low thermal conductivity of air. 

• Thus, an interface offers some 
resistance to heat transfer, which 
is termed the thermal contact 
resistance, Rc.

• The value of thermal contact resistance 
depends on the
– surface roughness, 
– material properties, 
– temperature and pressure at the interface, 
– type of fluid trapped at the interface. 

• Thermal contact resistance is observed to 
decrease with decreasing surface roughness 
and increasing interface pressure.

• The thermal contact resistance can be 
minimized by applying a thermally conducting 
liquid called a thermal grease.



Generalized Thermal Resistance 
Network

• The thermal resistance concept can be used to solve 
steady heat transfer problems that involve parallel 
layers or combined series-parallel arrangements.

• The total heat transfer of two parallel layers

 1 2 1 2
1 2 1 2

1 2 1 2

1 1T T T T
Q Q Q T T

R R R R

  
       

 
  

(3-29)
1

totalR

1 2

1 2 1 2

1 1 1
  =  total

total

R R
R

R R R R R

 
     

(3-31)

Combined Series-Parallel Arrangement

The total rate of heat transfer through 

the composite system

where
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Heat Conduction in Cylinders

Consider the long cylindrical layer

Assumptions:
– the two surfaces of the cylindrical 

layer are maintained at constant 
temperatures T1 and T2,

– no heat generation,

– constant thermal conductivity,

– one-dimensional heat conduction.

Fourier’s law of heat conduction
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Separating the variables and integrating from r=r1, 
where T(r1)=T1, to r=r2, where T(r2)=T2

Substituting A =2rL and performing the integrations 
give

Since the heat transfer rate is constant
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Thermal Resistance with Convection

Steady one-dimensional heat transfer through a 
cylindrical or spherical layer that is exposed to 
convection on both sides

where

(3-32)
,1 ,2

total

T T
Q

R
 



 
 

 

,1 ,2

2 1

1 1 2 2

ln /1 1
        

2 2 2

total conv cyl convR R R R

r r

r L h Lk r L h  

   

   (3-43)

Multilayered 
Cylinders 

• Steady heat transfer through

multilayered cylindrical or 

spherical shells can be handled just like multilayered plane.

• The steady heat transfer rate through a three-layered 
composite cylinder of length L with convection on both 
sides is expressed by Eq. 3-32 where: 
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Critical Radius of Insulation

• Adding more insulation to a wall or to the attic 
always decreases heat transfer.

• Adding insulation to a cylindrical pipe or a spherical 
shell, however, is a different matter.

• Adding insulation increases the conduction resistance
of the insulation layer but decreases the convection 
resistance of the surface because of the increase in the 
outer surface area for convection.

• The heat transfer from the pipe may increase or 
decrease, depending on which effect dominates.

• A cylindrical pipe of outer radius r1

whose outer surface temperature T1 is 

maintained constant.

• The pipe is covered with an insulator 

(k and r2).

• Convection heat transfer at T∞ and  h.

• The rate of heat transfer from the insulated pipe to the 
surrounding air can be expressed as
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• The variation of the heat transfer rate with the outer 
radius of the insulation r2 is shown 
in the figure.

• The value of r2 at which 
reaches a maximum is 
determined by

• Performing the differentiation 
and solving for r2 yields

• Thus, insulating the pipe may actually increase the 
rate of heat transfer instead of decreasing it.

(3-50)
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Heat Transfer from Finned Surfaces

• Newton’s law of cooling

• Two ways to increase the rate of heat transfer:
– increasing the heat transfer coefficient,

– increase the surface area fins

• Fins are the topic of this section.

 conv s sQ hA T T 



Fin Equation
Under steady conditions, the energy balance on this 

volume element can be expressed as

or

where

Substituting and dividing by x, we obtain
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Taking the limit as x → 0 gives

From Fourier’s law of heat conduction we have

Substitution of Eq. 3-54 into Eq. 3–53 gives
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For constant cross section and constant thermal conductivity

Where

• Equation 3–56 is a linear, homogeneous, second-order 
differential equation with constant coefficients.

• The general solution of Eq. 3–56 is

• C1 and C2 are constants whose values are to be determined 
from the boundary conditions at the base and at the tip of 
the fin.
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Boundary Conditions
Several boundary conditions are typically employed:

• At the fin base
– Specified temperature boundary condition, expressed 

as: (0)=  b= Tb-T∞

• At the fin tip
1. Specified temperature

2. Infinitely Long Fin

3. Adiabatic tip

4. Convection  (and 

combined convection 

and radiation).



Infinitely Long Fin (Tfin tip=T)
• For a sufficiently long fin the temperature at the fin 

tip approaches the ambient temperature

Boundary condition: (L→∞)=T(L)-T∞=0

• When x→∞ so does emx→∞

C1=0

• @ x=0: emx=1 C2= b

• The temperature distribution:

• heat transfer from the entire fin
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Adiabatic Tip
• Boundary condition at fin tip:

• After some manipulations, the temperature 
distribution:

• heat transfer from the entire fin
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Convection (or Combined Convection 
and Radiation) from Fin Tip

• A practical way of accounting for the heat loss from 
the fin tip is to replace the fin length L in the relation 
for the insulated tip case by a corrected length
defined as

Lc=L+Ac/p (3-66)

• For rectangular and cylindrical 

fins Lc is

• Lc,rectangular=L+t/2

• Lc,cylindrical =L+D/4

Fin Efficiency
• To maximize the heat transfer from a fin the 

temperature of the fin should be uniform (maximized) 
at the base value of Tb

• In reality, the temperature drops along the fin, and thus 
the heat transfer from the fin is less

• To account for the effect we define

a fin efficiency

or
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Fin Efficiency

• For constant cross section of very long fins:

• For constant cross section with adiabatic tip:
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Fin Effectiveness
• The performance of the fins is judged on the basis of the 

enhancement in heat transfer relative to the no-fin case.

• The performance of fins is expressed 

in terms of the fin effectiveness fin

defined as
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Remarks regarding fin effectiveness

• The thermal conductivity k of the fin material should 
be as high as possible. It is no coincidence that fins 
are made from metals.

• The ratio of the perimeter to the cross-sectional area 
of the fin p/Ac should be as high as possible. 

• The use of fins is most effective in applications 
involving a low convection heat transfer coefficient. 

The use of fins is more easily justified when the 
medium is a gas instead of a liquid and the heat 
transfer is by natural convection instead of by forced 
convection. 

Overall Effectiveness
• An overall effectiveness for a 

finned surface is defined as the 
ratio of the total heat transfer 
from the finned surface to the 
heat transfer from the same 
surface if there were no fins.
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Proper Length of a Fin

• An important step in the design of a fin is the 
determination of the appropriate length of the fin once 
the fin material and the fin cross section are specified.

• The temperature drops along 

the fin exponentially and 

asymptotically approaches the 

ambient temperature at some 

length.

Heat Transfer in Common Configurations
• Many problems encountered in practice are two- or 

three-dimensional and involve rather complicated 
geometries for which no simple solutions are 
available.

• An important class of heat transfer problems for 
which simple solutions are obtained encompasses 
those involving two surfaces maintained at constant 
temperatures T1 and T2. 

• The steady rate of heat transfer between these two 
surfaces is expressed as

Q=Sk(T1-T2) (3-79)

• S is the conduction shape factor, which has the 
dimension of length.



Table 3-7


