Chapter 3: Steady Heat
Conduction

Objectives

When you finish studying this chapter, you should be able to:

Understand the concept of thermal resistance and its
limitations, and develop thermal resistance networks for
practical heat conduction problems,

Solve steady conduction problems that involve multilayer
rectangular, cylindrical, or spherical geometries,

Develop an intuitive understanding of thermal contact
resistance, and circumstances under which it may be
significant,

Identify applications in which insulation may actually increase
heat transfer,

Analyze finned surfaces, and assess how efficiently and
effectively fins enhance heat transfer, and

Solve multidimensional practical heat conduction problems
using conduction shape factors.




Steady Heat Conduction in Plane

Walls /
1) Considerable temperature difference /

between the inner and the outer

surfaces of the wall (significant

temperature gradient in the x

direction).

2) The wall surface 1s nearly isothermal.

Steady one-dimensional modeling approach is
justified.

» Assuming heat transfer is the only energy interaction
and there 1s no heat generation, the energy balance

can be expressed as Zero for steady

operation
A
([ A
Rate of Rate of Rate of change
heat transfer | = | heat transfer | — | of the energy

into the wall out of the wall of the wall

=0
or —T—
Q' . Q — dEwall = (3-1)

in out dt

> The rate of heat transfer through the
wall must be constant ( Q,,,, .., = constant ),




* Then Fourier’s law of heat conduction for the wall
can be expressed as

: dT
Qcond wall — _kA N (W) (3-2)
’ dx

« Remembering that the rate of conduction heat transfer
and the wall area 4 are constant it follows

:> dT/dx=constant

!

the temperature through the wall varies linearly with x.
 Integrating the above equation and rearranging yields

: I -T
Qcond,wall :kA 1L = (W) (3'3)

Thermal Resistance Concept-
Conduction Resistance

e Equation 3-3 for heat conduction through a
plane wall can be rearranged as

: T -T
Qcond,wall — }e - (W) (3'4)

wall

« Where R, is the conduction resistance
expressed as

L
R  =— "C/W (3-5)
wall kA ( )




Analogy to Electrical Current Flow

* Eq. 3-5 1s analogous to the relation for electric current

flow I, expressed as v,

I (3-6)

—_—
e ANNN—=-T, Vi — N NVNN—F"V,
R,

Heat Transfer Electrical current flow
Rate of heat transfer ~ €=> Electric current

Thermal resistance &> Electrical resistance
Temperature difference €=> Voltage difference

Thermal Resistance Concept-
Convection Resistance

« Thermal resistance can also be applied to convection
processes.

» Newton’s law of cooling for convection heat transfer
rate (0., = h4, (T, - T,) can be rearranged as

b T - T //';t"
Qconv =— = (W) (3'7) T, ¢
R .

cony
Solid h

e R 1s the convection resistance

cony

. 1 o 9
R, = (C/W) (3-8 N
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Thermal Resistance Concept-
Radiation Resistance

» The rate of radiation heat transfer between a surface and
the surrounding

- T -T
de = EGA (T ! surr ) rad A (T surr) =———"" (W)
Rrad
1 (3-9)
rad (K/ W) (3'10)
rad “~s
Py = Ora =¢o (T2 +1,,)(T.+T,,) (Wm’-K)
ra A (T ]—;urr) Surr surr
(3-11)

Thermal Resistance Concept-
Radiation and Convection Resistance

» A surface exposed to the surrounding might involves
convection and radiation simultaneously.

» The convection and radiation resistances are parallel

to each other. ; 0.

e When 7, ~T, the radiation L AMAAA— T
effect can properly be 0 Foons
accounted for by replacing / Tt |
in the convection resistance ~ Solid il
relation by w o
Peompined = PeonytPrgg (W/mM?K) 0 S W

(3-12)




Thermal Resistance Network

 consider steady one-dimensional heat transfer
through a plane wall that is exposed to convection on

both sides.
* Under steady conditions we have

Rate of Rate of Rate of
heat convection | = | heat conduction | = | heat convection
into the wall through the wall from the wall

or )
O=hA(T,, ~T)=
kahi—h =hA(T,-T,,)

Rearrangmg and addlng

V Q 1Rc0nv 1
/ Q (Rwa;l 1

R T R, i R
— Q ‘k 0 Rema wan : comm, 2
e 2 — cony 21 Tape . . -

V——"*

E_TOS,I 0,2 QGRconv ]l -h Rwall 1 (Rconv 2) = Q Rtotal
\'_, Too\l_/TOOZ\-,
;> 0=— ’ (W) (3-15)
Rtotal
where { L 1
Rtotal — Rconv 1 + Rwall R (O C/ W)

conv2 hlA kA h A
(3-16)




« [t 1s sometimes convenient to express heat transfer
through a medium in an analogous manner to
Newton’s law of cooling as

Q=UAAT (W) (3-18)

 where U is the overall heat transfer coefficient.
* Note that

Ud=—— ('C/K) (3-19)

Multilayer Plane Walls

 In practice we often encounter plane walls that consist
of several layers of different materials.

» The rate of steady heat transfer through this two-layer
composite wall can be expressed through Eq. 3-15

where the total thermal |
resistance 1s =
A \ & iy
Rtotal = Rconv,l + Rwall,l + Rwall,2 + Rconv,2 g r \ r
1 L L 1 . —
= + + +
hd kA kA hA i L .




Thermal Contact Resistance

In reality surfaces have some roughness.

When two surfaces are pressed against each other, the
peaks form good material contact but the valleys form

voids filled with air. %
As a result, an interface contains - ~—
numerous air gaps of varying sizes %
that act as insulation because of the e
low thermal conductivity of air.

Thus, an interface offers some

resistance to heat transfer, which

is termed the thermal contact
resistance, R..

Layer 2

Temperature

The value of thermal contact resistance
depends on the

— surface roughness,

— material properties,

— temperature and pressure at the interface,
— type of fluid trapped at the interface.

Thermal contact resistance 1s observed to
decrease with decreasing surface roughness
and increasing interface pressure.

The thermal contact resistance can be
minimized by applying a thermally conducting
liquid called a thermal grease.




Generalized Thermal Resistance
Network

» The thermal resistance concept can be used to solve
steady heat transfer problems that involve parallel
layers or combined series-parallel arrangements.

» The total heat transfer of two parallel layers

~
- ~ Insulation

7 \
0-0+0,-5=D BT =(T1—T2§(i+i]‘.;

Rl Rz Rl Rz J o &
/
=TT s
| 1 :X/ (\3—-59) |
ot .
1 ( + j - __RR, er ==
=| T otal 3 31 oo -
Rtotal | 2 “ R +R, ( ) R,

Combined Series-Parallel Arrangement

The total rate of heat transfer through salaion

.:__-j
te)

the composite system

- ’j\ ks

. T . T ! kAT
Q=-—1—= (3-32)
R L L=L I
total ;
Q. I. .k| ? ..-.Q i
where QN
_ _ RR,
Rtotal - R12 + R3 + RCO’W B Rl + R2 i R3 + RCOHV (3'33)
L L L 1
R=—"3R =" R=""3R, =" (334
kl Al k2 A2 k3 A3 hA3




Heat Conduction in Cylinders

Consider the long cylindrical layer

Assumptions:

— the two surfaces of the cylindrical
layer are maintained at constant
temperatures 7, and 7,

— no heat generation,
— constant thermal conductivity,

— one-dimensional heat conduction.

Fourier’s law of heat conduction

: dT
Qcond eyl _kA N (W) (3'35)
dr
Qcond cyl kA d—T (W) (3-35)
dr

Separating the variables and integrating from r=r,,
where 7(r,)=1, to r=r,, where 1(r,)=1,
- T.

| Comtat g _ _ | kar  (336)
r=n A =1
Substituting 4 =2 7L and performing the integrations
give
- T T \ T T
Q. ond ey —'27sz *—«— _____ (3-37)
___ In(n/ " )/ 3
Since the heat transfer rate 1s constant ‘,
T-T, |
Qcond ,cyl / (3-38)
R,

‘— -




Thermal Resistance with Convection

Steady one-dimensional heat transfer through a
cylindrical or spherical layer that is exposed to
convection on both sides

Q' _ T o, I 0,2
Rtotal
where
Rtotal Rconv 1 + Rcyl + Rconv 2 B S e LR
1 In(r,/n) 1
= + + (3-43)
(2727/1[4) h — 2xLk (27zr2L) h,
Multilayered

Cylinders

« Steady heat transfer through , \ S

multilayered cylindrical or ll } o g { o

spherical shells can be handled just like multilayered plane.

» The steady heat transfer rate through a three-layered
composite cylinder of length . with convection on both
sides 1s expressed by Eq. 3-32 where:

Rtotal = Rconv,l + Rcyl,l T Rcyl,3 T Rcyl 3 T Rconv 2 (3'46)

B 1 +ln(rz/rl)Jrln(ig/rz)+ln(r4/r3)+ 1
(2zrL)h 2xlk,  2xlk,  2xzLk,  (2znL)h,




Critical Radius of Insulation

* Adding more insulation to a wall or to the attic
always decreases heat transfer.

» Adding insulation to a cylindrical pipe or a spherical
shell, however, is a different matter.

« Adding insulation increases the conduction resistance
of the insulation layer but decreases the convection
resistance of the surface because of the increase in the
outer surface area for convection.

* The heat transfer from the pipe may increase or
decrease, depending on which effect dominates.

A cylindrical pipe of outer radius 7,

Insulation

whose outer surface temperature 7 1s
maintained constant.

The pipe 1s covered with an insulator
(k and r,).

Convection heat transfer at 7 and /.

The rate of heat transfer from the insulated pipe to the
surrounding air can be expressed as

0= L-T, _ I -1,
R, +R, = In(r/ rl)+ 1 (3-37)

2Lk h(27znL)




The variation of the heat transfer rate with the outer
radius of the insulation 7, is shown

in the figure. 0
The value of r, at which Q
reaches a maximum is

determined by :
dQ
“=_0

drz Qmax ————————
Performing the differentiation Qh““‘/\

and solving for r, yields

=

|
|
|
|
k |
Forcytinder = (m) (3-50) o ..

Thus, insulating the pipe may actually increase the
rate of heat transfer instead of decreasing it.

Heat Transfer from Finned _S__urfaces

* Newton’s law of cooling
. FTATS
Qconv j\@é&(f; - TOO )
* Two ways to increase the rate of heat transfer:

— 1increasing the heat transfer coefficient,

— increase the surface area =2 fins

 Fins are the topic of this section.




Fin Equation

Under steady conditions, the energy balance on this
volume element can be expressed as

Rate of heat Rate of heat Rate of heat
conduction into |— [ conduction from the [4-| convection from
the element at x element at x+Ax the element h

or Qcond,x - Qcond,x+Ax + cony
where (¢ = _

Qo =h(pAx)(T-T,)
Substituting and dividing by Ax, we obtain

Qcond x+Ax  Zcond ,x
’ ~+hp(T-T )=0 3-52
+hp(T-T,) (3-52)

Taking the limit as Ax — 0 gives
dQcond

+hp(T-T 0 3-53
. p(T-T,)= (3-53)
From Fourier’s law of heat conduction we have
- T
Qcon 4 —kA d— (3-54)
dx

Substitution of Eq. 3-54 into Eq. 3—53 gives
d dT

kA,— |-hp\T—-1,)=0 _
dx( a’xj p( OO) (3-53)




For constant cross section and constant thermal conductivity

2
fle -m*0=0 (3-56)
Where
O=T-T,6 ; m= Ip
kA

[4

» Equation 3-56 is a linear, homogeneous, second-order
differential equation with constant coefficients.

» The general solution of Eq. 3—56 is
O(x)=Ce™ +C,e™ (3-58)
* (C, and C, are constants whose values are to be determined

from the boundary conditions at the base and at the tip of
the fin.

Boundary Conditions

Several boundary conditions are typically employed:

At the fin base

— Specified temperature boundary condition, expressed
as: A0)= 0,=T,-T,

« At the fin tip

_ T.
1. Specified temperature T§ I P
c 5 7 \ £ I
' F e ] ' | .
2. Infinitely Long Fin SO YR
3. Adiabatic tip Specified
4. Convection (and temperature
combined convection (a) Specitied temperature
. (D) Negligible heat loss
and radiation). (¢) Convection

(d) Convection and radiation




Infinitely Long Fin (7%, ;,,=T)

 For a sufficiently long fin the temperature at the fin
tip approaches the ambient temperature

Boundary condition: &L—w)=T(L)-7,.=0 '

* When x—o so does e¢"™*—o0

C,=0
¢ (@ x=0: e™=1 C=0,

* The temperature distribution:

1 (.X) _100 —mx —xﬁhp/k/‘l
=e =e ¢ _
T —T. (3-60)

A=

_____§+-?__________ =
e
= b

-

* heat transfer from the entire fin
dT

O=—kd,— =\hpkd,(T,~T.) (3-61)

x=0

e

/ 1

Adiabatic Tip

* Boundary condition at fin tip:

do
 After some manipulations, the temperature
distribution:

T(x)-T, coshm(L—x)
1, -T, ~ coshmL
* heat transfer from the entire fin
O=—k4, fl—T = Jhpkd. (T, - T, )tanhmL  (3-65)
X

x=0

=0 (3-63)

(3-64)




Convection (or Combined Convection
and Radiation) from Fin Tip

» A practical way of accounting for the heat loss from
the fin tip is to replace the fin length L in the relation
for the insulated tip case by a corrected length

defined as 0.
LL+d/p (366) | LM comn
 For rectangular and cylindrical | L :
fins L, is ©meimiieip 4
A 1 8
* Lc,rectangular:l’_i_t/ 2 l i)m LL“: -

R —I+D/4 E

c,cylindrical

(b) Equivalent fin with insulated tip

Fin Efficiency

* To maximize the heat transfer from a fin the
temperature of the fin should be uniform (maximized)
at the base value of 7,

* In reality, . and thus
the heat transfer from the fini1s less =

|
» To account for the effect we define s&

0 1 :““‘*-._\
- - - 65 &
a fin efficiency i o
__Ym _
77 fin - P -
Q fin,max Ideal heat transfer rate from the fin A S
) . . 7
if the entire fin were at base temperature i{
S0 e S

Q mn = 77 an in,max = 77 mhA mn (T _TOO) $\ k ‘;“ ‘ N-I-;---:;/
fin = i fin, A" fin L (3-60) =< oeeo- .




Fin Efficiency

» For constant cross section of very long fins:

Qﬁn _ \hpkA, (E‘Too)_l kA, _ 1 (3-70)
\ Ap

Tiong.jin = O 1A, (T,-T.) L mL

» For constant cross section with adiabatic tip:

Qﬁn JhpkA, (T, — T, )tanh alL

nadiabatic,ﬁn -
Qﬁn,max hAﬁn (]; _Too)

3 tanh mL
mlL

(3-71)

Fin Effectiveness

» The performance of the fins 1s judged on the basis of the
enhancement in heat transfer relative to the no-fin case.

* The performance of fins 1s expressed

in terms of the fin effectiveness &, "
defined as “ ,
- O

_____________

8 I
. Qno fin hAb (Tl; — T © ) Heat transfer rate

from the surface
of area 4,

(3-72) S




Remarks regarding fin effectiveness

» The thermal conductivity k of the fin material should
be as high as possible. It is no coincidence that fins
are made from metals.

» The ratio of the perimeter to the cross-sectional area
of the fin p/A_ should be as high as possible.

» The use of fins 1s most effective in applications
involving a low convection heat transfer coefficient.

U

The use of fins is more easily justified when the
medium is a gas instead of a liquid and the heat
transfer 1s by natural convection nstead of by forced
convection.

Overall Effectiveness

e An overall effectiveness for a

finned surface is defined as the /
ratio of the total heat transfer &

from the finned surface to the / 7
—_J_._. —

.
|

heat transfer from the same
surface 1f there were no fins.

_ 9w
8ﬁn,0vemll - Q
o fi (3-76)
h( Ay + 10 A ) P—
— Apfin =WXH=3X(txXw)
hAnoﬁn .-\:-1|1:_‘><L><'.'.'+1><n-

=2 x Lxw(one fin)




Proper Length of a Fin

* An important step in the design of a fin is the
determination of the appropriate length of the fin once
the fin material and the fin cross section are specified.

* The temperature drops along

Tlr _—~Tx)
AT = high

the fin exponentially and

:jT:Inu: AT=0 :

| |
AT

/B IR SN ..

asymptotically approaches the

ambient temperature at some

0

length. heat

Heat Transfer in Common Configurations

* Many problems encountered in practice are two- or
three-dimensional and involve rather complicated
geometries for which no simple solutions are
available.

* An important class of heat transfer problems for
which simple solutions are obtained encompasses
those involving two surfaces maintained at constant
temperatures 7', and 7.

» The steady rate of heat transfer between these two
surfaces is expressed as

O=SK(T,-T,) (3-79)
 §is the conduction shape factor, which has the
dimension of length.
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