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Objectives

Understand the concept of thermal resistance and its
limitations, and develop thermal resistance networks for
practical heat conduction problems

Solve steady conduction problems that involve multilayer
rectangular, cylindrical, or spherical geometries

Develop an intuitive understanding of thermal contact
resistance, and circumstances under which it may be
significant

|dentify applications in which insulation may actually
increase heat transfer

Analyze finned surfaces, and assess how efficiently and
effectively fins enhance heat transfer

Solve multidimensional practical heat conduction problems
using conduction shape factors



STEADY HEAT CONDUCTION IN PLANE WALLS
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FIGURE 3-1

Heat transfer through a wall 1s one-
dimensional when the temperature of
the wall varies in one direction only.

Heat transfer through the wall of a house can be
modeled as sfeady and one-dimensional.

The temperature of the wall in this case depends
on one direction only (say the x-direction) and
can be expressed as 7(x).

Rate of Rate of Rate of change
heat transfer | —| heat transfer | = of the energy
into the wall out of the wall of the wall

. ) l':ir‘l—:;v'.-'a]l d Ewal] ’f (?FT = G
Oin = Gou = dt for steadly operation

In steady operation, the rate of heat transfer
through the wall is constant.
: dr - Fourier’s law of
) = — kA == W ouriers lIaw O
Qeond, wal dx (W) heat conduction
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Under steady conditions, the
temperature distribution in a plane
wall is a straight line: d71dx = const.
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The rate of heat conduction through
a plane wall is proportional to the
average thermal conductivity, the
wall area, and the temperature
difference, but is inversely
proportional to the wall thickness.

Once the rate of heat conduction is
available, the temperature 7(x) at
any location x can be determined by
replacing 7, by 7, and L by x.



Thermal Resistance Concept
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Conduction resistance of the R

wall: Thermal resistance of the
wall against heat conduction.
Thermal resistance of a medium Analogy between thermal and electrical
depends on the geomelry and the resistance concepts.

thermal properties of the medium.

(b) Electric current flow

rate of heat transfer — electric current

V,—V, REJ = Lfg; A thermal resistance — electrical resistance
= temperature difference — voltage difference

! R, Electrical resistance



Newton’s law of cooling A

_ | ./
Qmm—‘ - hAs {T‘ — 1) Tq

. 1.— 1. N

- — - T,
Qeonv = R com (W) Solid h )

R = . ("C/W)

COnY h’i i ' '
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Schematic for convection resistance at a surface.

When the convection heat transfer coefficient is very large (A — ),
the convection resistance becomes zeroand 7, ~ T.

That is, the surface offers no resistance to convection, and thus it
does not slow down the heat transfer process.

This situation is approached in practice at surfaces where boiling
and condensation occur. 6
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Rate of
heat convection
from the wall

Rate of
heat conduction | =
through the wall

Rate of
heat convection | =
into the wall

Thermal Resistance Network

T,
: '—\ Wall
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The thermal resistance network for heat transfer through a plane wall subjected to
convection on both sides, and the electrical analogy.
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Temperature drop

AT = OR (°C)

O = UA AT (W)

_ |
Rlulill

U overall heat
transfer coefficient

(°C/K)

Once Qis evaluated, the
surface temperature 7, can
be determined from

T.x.] — T] T::o] — T]

O Reom1  UhA

En—— () = 10 W

chm-', I T Rwa]l T.} Rcmw, 2
Ty e—AW—4—\WWW—4—AWW—s T,
2°C/W 15°C/W 3°C/W
AT = OR

The temperature drop across a layer is
proportional to its thermal resistance.



Multilayer

) () Plane
T::c-] . Wall 1 Wall 2 Wa" S

The thermal resistance
n,  nhetwork for heat transfer
through a two-layer plane
wall subjected to

k, k convection on both sides.
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interface temperatures when 7., and
T, are given and Q 1s calculated. 11



THERMAL CONTACT RESISTANCE

Layer 1 C) Layer 2 Layer 1 Layer 2

Temperature

Interface ~d drop

No
temperature
drop

Temperature
distribution
=T,
(a) Ideal (perfect) thermal contact (b) Actual (imperfect) thermal contact

Temperature distribution and heat flow lines along two solid plates
pressed against each other for the case of perfect and imperfect contact.



When two such surfaces are
pressed against each other, the
peaks form good material
contact but the valleys form
voids filled with air.

These numerous air gaps of
varying sizes act as /nsulation
because of the low thermal
conductivity of air.

Thus, an interface offers some
resistance to heat transfer, and
this resistance per unit interface
area is called the thermal
contact resistance, R..

A typical experimental
setup for the
determination of thermal
contact resistance

Applied load

Loading shaft ————__ 1
Alignment collar ——— % 11
Top plate — AL
Steel ball =T

. BC
Pencil heaters —=A~

Heaters block — | |

Upper test specimen —>  5— Thermocouples
™| .
_ = Interface
Lower test specimen —> 3
Lower heat flux meter — 3
Cold ol e -y —
1 e ——= | | -

Ll I-" e e — (_-‘JI'..I
Load cell fluid
Steel ball =
Bottom plate —= T I

Bell jar —
base plate

13
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The value of thermal
contact resistance
depends on:

) — a h .. thermal contact
Q = heA Al pergace cgnductance  surface roughness,
. * material properties,
o= Q/A (W/m?2 - °C) » lemperature and
“ AT erface | - pressure at the
interface
LAY A S * type of fluid trapped
Re=7-=—"7=" (m~ - °C/W) at the interface.
Le Q/A
L 0.0l m o
Rc: insulation — I - 0.04 W/m - 0( 0.251 C/W
R, copper = % B 386{-}‘;7\!0'/111? ]. °C 0.000026 m? - °C/W

Thermal contact resistance is significant and can even dominate the
heat transfer for good heat conductors such as metals, but can be
disregarded for poor heat conductors such as insulations.

14



TABLE 3-1

Thermal contact conductance

for aluminum plates with different
fluids at the interface for a surface
roughness of 10 um and interface
pressure of 1 atm (from Fried, 1969).

Contact
Fluid at the conductance, h,,
interface W/m2-K
Air 3640
Helium 9520
Hydrogen 13,900
Silicone oll 19,000
Glycerin 37,700

The thermal contact resistance can
be minimized by applying

* a thermal grease such as silicon oill

* a beftter conducting gas such as
helium or hydrogen

* a soft metallic foil such as tin, silver,
copper, nickel, or aluminum

Thermal contact conductance {Wm]E*K}

=
Th

=
i

o
%]

Contact pressure (psi)
10 10

Coated with

tin/nickel :nlli:,'n}-;“n‘p

—_

I
Bronze
|

Nickel
N

— Coated with
aluminum

alloy Stainless

Steel

Coated witl
nickel alloy |

1]

=
=

;

o
]

|
S
[

| |||u..|..~J--ﬂ'-rL5"1'|||||
102 103

Contact pressure (kN/m?)

[ Incoated
Coated

Effect of metallic coatings on
thermal contact conductance

1

04

Btu

h-ft2-°F

|

Thermal contact conductance



TABLE 3-2

Thermal contact conductance of some metal surfaces in air (from various sources)
Surface Fressure, he™
Material condition Roughness, um Temperature, °C MPa Wim2-K
Identical Metal Pairs
416 Stainless steel Ground 2.54 O0-200 0.17-2.5 3800
304 Stainless steel Ground 1.14 20 4-7 1900
Aluminum Ground 2.54 150 1.2-2.5 11,400
Copper Ground 1.27 20 1.2-20 143,000
Copper Milled 3.81 20 1-5 55,500
Copper (vacuum) Milled 0.25 30 0.17-7 11,400
Dissimilar Metal Pairs
Stainless steel- 10 2900
Aluminum 20-30 20 20 3600
Stainless steel- 10 16,400
Aluminum 1.0-2.0 20 20 20,800
Stee| Ct-30- 10 50,000
Aluminum Ground 1.4-2.0 20 15-35 KS.000
Stee| Ct-30- 10 4800
Aluminum Milled 4.5-7.2 20 30 8300
5 42000
Aluminum-Copper Ground 1.17-1.4 20 15 56,000
10 12,000
Aluminum-Copper Milled 4.4-4.5 20 20-35 22,000

The thermal contact conductance is highest (and thus the contact
resistance is lowest) for soff metals with smooth surfaces at high pressure.  1¢



GENERALIZED THERMAL RESISTANCE NETWORKS

. . . T
Q= Q] + Qj -
o=
- Rlul;ll

| |

) — T
ﬁlul{ll RI

) _
ﬁlnl;ll o

T,—T
——2 = (T, —Tz)(RiJrRi)
2 1 2

Insulation

R\R, T~ . [T,
R, +R, , |@ k&

Thermal ;
resistance
network for two

parallel layers. 17



“] . T[ o Tcx- RIRZ
Q= Rmn] Rtoml - RLE + RB + Rmm-‘ - R, + R, + RB + Rm]w
L, I, Insulation
Ri=—— Ry=—=- e
ki A ° kA
A,
3 | ]/* © &
R'} 7 Rm]w ~ A I @ A
f\g Al fTAg \ @ f\z
Ag — kg h Tx,
Two assumptions in solving complex
multidimensional heat transfer
problems by treating them as one-
dimensional using the thermal — L =L, Ly
resistance network are ‘
(1) any plane wall normal to the x-axis is ‘ ¢ —
/sothermal (i.e., to assume the L .0
temperature to vary in the x-direction 1 4 | AW ——AAANA—®
Only) T] =2 R" RCG[W T
SV AVATAY LT

(2) any plane parallel to the x-axis is

adiabatic (i.e., to assume heat transfer

to occur in the x-direction only)

Thermal resistance network for
combined series-parallel

18
arrangement.



HEAT CONDUCTION IN CYLINDERS AND SPHERES

Heat is lost from a hot-water pipe to
the air outside in the radial direction,
and thus heat transfer from a long
pipe is one-dimensional.

Heat transfer through the pipe
can be modeled as sfeady
and one-dimensional.

The temperature of the pipe
depends on one direction only
(the radial r-direction) and can
be expressed as 7 = 7(1).

The temperature is
independent of the azimuthal
angle or the axial distance.

This situation is approximated
in practice in long cylindrical
pipes and spherical
containers.

19



Qcand, eyl — —kA — (W)

Jﬂ g Qcond, cyl d Jﬂ T, & dT
O = —
r=r, A T=T,
A = 2mrL
: 1 2
_ ) = 2wk W
Tg Qu{.nml cyl ! lﬂ(f'z /1 ]) ( )
A long cylindrical pipe (or spherical | |
shell) with specified inner and outer _ L~ 1 W
surface temperatures 7, and 7. =cond, cyl R, W)
R — In(r, /I',) [n(Outer radius/Inner radius)
<y 2Lk 27 X Length X Thermal conductivity

Conduction resistance of the cylinder layer 20



A spherical shell
with specified
inner and outer

--T, surface
temperatures 7,
and 7.
. I — T,
Qazumt sph Rsph
R R Outer radius — Inner radius

soh Ay k 477 (Outer radius)(Inner radius)(Thermal conductivity)

Conduction resistance of the spherical layer -



Q. B Rtl_r[u]

for a cylindricallayer
+ R, TR
[ In(r,/ry) [

= + +
(2mrL)h, 2wLk (2mrr,L)h,

total ~— RL'(HH-‘. l conv, 2

R

total — Rcmn: s Rcyl + Rl:mn; 2

for a sphericallayer

The thermal resi§taqce Ry = Rog 1 + Ry + Reo, 5
network for a cylindrical (or N o co
spherical) shell subjected S ST R S
to convection from both the Aarih,  dmrnk - (4ari)h;

inner and the outer sides. -



Multilayered Cylinders and Spheres

Row = Reow.1 + Ry + Ry 2 + Ry 3 + R

total — “tconv, 1 cyl, 1

conv, 2

l In(ry/ry)  In(rs/ra)  In(ry/rs) 1
= e +
. JFF[A] jx_Lk] EWLR_\ jﬁif\'; hgﬁ'!_;
The thermal resistance —
network for heat transfer e .
through a three-layered Q I — Ty
composite cylinder Riota
subjected to convection ,
on both sides. R
hl
T,
T, T, T, T,
Ty @ ANAMAA AN ——ANMAN—4—AMNMN—¢—ANNN—e T,
Rmnv. 1 R::}f]_ l RC}’]. 2 RC}’]. 3 Rcunv_ 2
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To, T, T, ; T., Theratio AT/R across any layer is
—VWWW—e—WWW—e—WWW—e—\WWVW'—e equal to Q, which remains constant in
Reonv, 1 R, R, conv, 2 one-dimensional steady conduction.

oo LT,
| RCDH‘&
Ty - T,
Rcmw.] + R]
T, - T,
=217 Once heat transfer rate Q has been
' 2 calculated, the interface temperature
I, - T, 7, can be determined from any of the
R, following two relations:
_ TE_ TO"-'E . TC'DI — T T:,D] — T"}
"R, +R Q= = -
2 " “eonv,2 Reow. 1 Tt Rul I | N In(ry/ry)
_ hy(27rL) 2Lk,
o Tg ij o Tj T T.-}:.j
Q Rg + Rq + Rcon\, 2 B 11'1 +’.!| /F‘q) l[l[f‘4/1‘3) |

dwlk,  2mlk, | hQmrl) 2



CRITICAL RADIUS OF INSULATION

Adding more insulation to a wall or
to the attic always decreases heat
transfer since the heat transfer area
is constant, and adding insulation
always increases the thermal
resistance of the wall without
increasing the convection
resistance.

In a a cylindrical pipe or a spherical
shell, the additional insulation
increases the conduction
resistance of the insulation layer
but decreases the convection
resistance of the surface because
of the increase in the outer surface
area for convection.

The heat transfer from the pipe
may increase or decrease,
depending on which effect
dominates.

Insulation
\

R

conv

WwW—e T,

An insulated cylindrical pipe exposed to
convection from the outer surface and
the thermal resistance network
associated with it.
. T, —T.
Q_RM+R

T| — T.x.
~In(ry/ry) ]
+ —
h(2mr,L)

conv

25



The critical radius of insulation
for a cylindrical body:

_k

Fer, cylinder ~— h

(m)

The critical radius of insulation
for a spherical shell:

2%
‘{u'. sphere ~ h

The largest value of the critical
radius we are likely to

encounter is
I

'"".I'I'ILI.\.. insulation . “”5 \ﬁr"’,‘"ll]] . G{:1

Per,max — J,’. - .; \k&_.'f.r”_l_‘-' . c:-(:ﬂ

‘min

=00lm=1cm

We can insulate hot-water or
steam pipes freely without
worrying about the possibility of
increasing the heat transfer by
insulating the pipes.

h
Fa
|
|
|
| |
| |
| |
| |
| |
| |
| |
| | .
0 r e = kilh Iy
The variation of heat transfer
rate with the outer radius of the
insulation , when r;, < r,.
26



HEAT TRANSFER FROM FINNED SURFACES

). = Newton’s law of cooling: The rate of heat transf
Qmm‘ — hAs(Ts _ Too) ewton’s law of cooling e r? e o ga ransfer
from a surface to the surrounding medium

When 7, and 7_ are fixed, {wo ways to
increase the rate of heat transfer are

« To increase the convection heat transfer
coefficient h. This may require the
installation of a pump or fan, or replacing
the existing one with a larger one, but this
approach may or may not be practical.
Besides, it may not be adequate.

« To increase the surface area A, by
attaching to the surface extended surfaces
called fins made of highly conductive
materials such as aluminum.

FIGURE 3-35
Some innovative fin designs.
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FIGURE 3-33

Presumed cooling fins on dinosaur
stegosaurus. (© Alamy RF.)

The thin plate fins of a car
radiator greatly increase the
rate of heat transfer to the air.

28



Fln Eq uatlon Rate of er‘{rr Rat.e_ of heat Rate o_f heat
conduction into | = | conduction from the |+ | convection from
the element at x element at x + Ax the element

Volume Qcond,x - Qt;Dlld,x + Ax + Qc-:mv
element

Ocony = h(p AX)(T — T,,)

Qcond x4+ Ax Qcond X

Ax
Ax— 0

dQ cond

+ hp(T—T,) = 0

Qeond, x + Ax + hp(T—T,) =0

dx
. dT
Ocond = _kAc‘a
i h, T,
Rhm e d (mf ﬂ) — (T —T,) =0
I dx d
\s . .

d*6 20 = 0 Differential ,  /ip

Volume element of a fin at location x dx? ~ " equation " kA,

having a length of Ax, cross-sectional § = T — 7. Temperature .

area of A_, and perimeter of p. excess




The general solution of the
T

differential equation
O(x) = Ce™ + Cye™™ . L
X

o o

Boundary condition at fin base |
ganyiee - Specified )
00)=6,=T1, T, temperature /
L ) (a) Specified temperature
1 Infinitely Long Fin (b) Negligible heat loss
= (¢) Convection
( 7;"1 tip 7<->°) (d) Convection and radiation

Boundary conditions at the fin

Boundary condition at fin tip
base and the fin tip.

L) =TL) —T,=0 L — o

The variation of temperature along the fin
) — 6=1T-—T
T“) I = o X = f:,—.x'\'f,r;;r;k,—'tc -

Iy — 1. m = \/hplkA.

The steady rate of heaf transfer from the entire fin

O = kA L =N kA (T, - T 30

=long fin ¢ (dx 0
- =



—X |II 'r!f !

0 L,
| [ :
| [
| [
| [
| [

' |

|

| [
T, | h, T, |

= ¥ i

I )
L4 J |
O :
| - Af? = Au; :
|

(p=nD A, =

1 . . . .
wD-/4 for a cylindrical fin)

—T(x) =T+ (T, —T,)e VA,

[Ln

IIII
AV

[; base = (L fin

Under steady conditions, heat
transfer from the exposed surfaces
of the fin is equal to heat conduction
to the fin at the base.

The rate of heat transfer from the fin could also
be determined by considering heat transfer from
a differential volume element of the fin and
integrating it over the entire surface of the fin:

hT(x) — T, dAg, = ho(x) dA

J Hfin SLfin

Qﬁn =

fin

A long circular fin of uniform
cross section and the variation
of temperature along it. 31



2 Negligible Heat Loss from the Fin Tip
(Adlabatlc fin tlp, inn tip = 0)

Fins are not likely to be so long that their temperature approaches the
surrounding temperature at the tip. A more realistic assumption is for

heat transfer from the fin tip to be negligible since the surface area of
the fin tip is usually a negligible fraction of the total fin area.

Boundary condition at fin tip

T,
6 — 0 \, +L_>
((.-!.I x=L - 0 Ny \] X
~ Specified
The variation of temperature along the fin temperature V4
T(l) - T-f. cosh HI(L — X) (u}-Specifiled temperature
- = (D) Negligible heat loss
T;} — TI cosh mlL (¢) Convection

_ _ (d) Convection and radiation
Heat transfer from the entire fin

= g, 4L

Q;u_HLH'HIHL’ ll][‘ ¢ HI X 0
1- I|I =

= \-f-"";/!/Jﬁ'A{. (1, — T,) tanh mL

32



3 Specified Temperature ( 7, i, = 7;)

In this case the temperature at the end of the fin (the fin tip) is
fixed at a specified temperature 7,.

This case could be considered as a generalization of the case of
Infinitely Long Fin where the fin tip temperature was fixed at 7.

Boundary condition at fin tip: OL)=6,=T, — T,

Specified fin tip temperature.
Ix)—17T, [T,—T)I(T,— T,)]sinh mx + sinh m(L—x)
T, —T. B sinh mL

Specified fin tip temperature:

| T
0 = —KA, -

=2 specified temp. .
(!.lll. r=1)

coshmL — [(T, — T)AT, — T.,)]

sinh mL

— \"h f} ﬁ%{{ T;, o Tx }

33



4 Convection from Fin Tip

The fin tips, in practice, are exposed to the surroundings, and thus the proper
boundary condition for the fin tip is convection that may also include the effects
of radiation. Consider the case of convection only at the tip. The condition

at the fin tip can be obtained from an energy balance at the fin tip.

([- cond — U mm}

dT

Boundary condition at fin tip: — kA, — = hA|I(L) — T,]
dx x=L
. . ~ Tx)—1T, coshm(L —x) + (h/mk) sinh m(L — x)
Convection from fin tip.; — — = .
= 1. cosh mL + (h/mk) sinh mL

Convection from fin tip.

dT
(.JJ convection ~ _'E‘ _1
R “dx

VhokAAT, — T sinhmL + (h/mk) coshmL
= f YK F l"[ B ) / :
/ cosh mL + (h/mk) sinh mL

34



A practical way of accounting for the
heat loss from the fin tip is to replace
the 7in length L in the relation for the
/nsulated tip case by a corrected
length defined as

L.=L + i
o [
Lr_'. rectangular fin o L T E
D
L. cylindrical fin — L+ 4

f the thickness of the rectangular fins
D the diameter of the cylindrical fins

Qﬁn

‘ Convection

u-n--""/
|
= L |
|
(a) Actual fin with :
convection at the tip |
A
X | “e
O | p
fin f |
| |
‘ | | Insulated
| ,/
| -—
|
=t L =
i

(D) Equivalent fin with insulated tip

Corrected fin length L_is defined such
that heat transfer from a fin of length L,
with insulated tip is equal to heat transfer
from the actual fin of length L with
convection at the fin tip. 35



Fin Efficiency

j/

;—1b=w3<.!‘

Ql'in. max h*"j‘ﬁn (Tb o T’:r“)

-

(a) Surface without fins

80

80
80°C

(a) Ideal

<€ L >|
(b) Surface with a fin
Aj,=2xwxL+wxt - 56°C
=2xwxL (b) Actual
FIGURE 341 FIGURE 342

Ideal and actual temperature
distribution along a fin.

Fins enhance heat transfer from
a surface by enhancing surface area.
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. zero thermal resistance or infinite
) - j— T £ . —
Ctinmax = Mg (T = 1o0) oy conductivity (Tq, = T,)

B  fin ~Actual heat transfer rate from the fin
i Ot max [deal heat transfer rate from the fin

if the entire fin were at base temperature

Q fin nlm le max nl'in hA f1in (Tf;r o Tm)

Qi V hpkA (T — 1) _ 1 "IIIkA'f' |

Mong fin =~ 53 -

Ql'in. max htﬂilln (Tf;r T ) L \ hf) ‘F”L—

o _ VIpkA (T, — T.)tanh aL _ tanh mL

Q fin, max N hAl'iﬁ (Th B Tx) mL

Tadiabatic tip
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Efficiency of straight fins of rectangular, triangular, and parabolic profiles.
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0.3 P gL =Lwn "‘%h::-..____h‘““‘--—-—.____‘
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Efficiency of annular fins of constant thickness #.
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Efficiency and surface areas of commeon fin configurations

Straight rectangular fins

m = \/ 2hikt
L=L+tr2
Afil‘l = EWLC

Straight triangular fins
m =/ 2h/kt
Ao = 2w\ L2 + (1/2)?

Straight parabolic fins

m =/ 2h'kt

Asn = WL[Cy + (LI In(t/L + C))]
C,=V1+(tLF

Circular fins of rectangular profile

m = \/ 2hikt
[, =1, + 12
Aﬁ.".l = 277{3’22,: - .rlzjl

Pin fins of rectangular profile

m =/ 4h/kD
L.=L+ Di4
’qfin = ﬂD‘r—c

tanhmL,

1 h{2mL)
i =L 1,(2mL)

2
"l evemnE+ 1
L Kmr)h(mr, ) — 1{mn)K (mry)
i = ) K, (mrag) + Kolmr)l (mra)
2rim
2= 5
"Vé?c - 'rlz
_ tanhmL,
Tfin = f]’]‘.lr_c
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Pin fins of triangular profile
m =\ 4h/kD

mD, S ——
."'J‘.ﬁn = —}\ L=+ {D.l'rg_:'_

Pin fins of parabolic profile

m = v 4h/kD
A —”—Lg[c Cs — £ In@DCYL + Co)]
fin = apn gl oD ({ A 3)

Cy=1+2(DL2
Cy= 1+ (DL

Pin fins of parabolic profile
(blunt tip)

m = “4hlk

hikD
Gl {[16(4’_ DP + 172 — 1}

"qfin QELE

2 b(2mL)
= L (2mL)

2

Ttin =

3 h(4mL/3)
i = o mL 1,(AmL/3)

1+ (2mLi3)* +

1

L ". (D2 i l—x/L)
_J,r‘ y={D2)il— )2

o] ?*
k v

— .
=iy (1— KL

I:f_—l

v

* Fins with triangular and parabolic profiles contain less material
and are more efficient than the ones with rectangular profiles.

* The fin efficiency decreases with increasing fin length. \Why?

« How to choose fin length? Increasing the length of the fin
beyond a certain value cannot be justified unless the added
benefits outweigh the added cost.

* Fin lengths that cause the fin efficiency to drop below 60 percent

usually cannot be justified economically.

» The efficiency of most fins used in practice is above 90 percent. 4



Heat transfer rate from Fin

Q,-m Q,-m the fin of base area A, Effectiveness
Eq = = - = - -
i Q... 1Ay (T, —T.) Heat transfer rate from
the surface of area A,
Qt‘m o Qi"m o 1 fin hA t”m{Th - T’f-} o ‘41‘111
ST T hA,(T,—T.  hA,(T,— T, A, ln
: The
. — Qno in .
O VpkA T, ~T.  [kp  [g g Sffectivens
€long fin Qm:. N WA (T, —T,) \ hA.
Ab
« The thermal conductivity k of the fin
should be as high as possible. Use 0.

aluminum, copper, iron. T,

* The ratio of the perimeterto the cross- /@ l l )
sectional area of the fin plA, should be Y \
as high as possible. Use slender pin fins.
» Low convection heat transfer coefficient
h. Place fins on gas (air) side. o fin
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The total rate of heat transfer from a
finned surface

thal, fin = Qunf'n Qfm
=hA, . (T, —T,) + 0. hA; (T, — T,)

unfin

= ;I(Aunﬁn + nﬁnAﬁlll(Tb — T )

oo

Overall effectiveness for a finned surface

Quml fin h{‘ﬁ"um‘m + Tfin 4 1111}{ TJ’J o ‘TT-}

é_
fin. over: l[[ ‘ —
()[nl il, no fin ‘II,‘ no fin ( Th Tx }

The overall fin effectiveness depends
on the fin density (number of fins per
unit length) as well as the
effectiveness of the individual fins.

The overall effectiveness is a better

=wxH

Ano fin

;%ﬁm=wx}£—3xﬂij
f%m=2xiﬁ<w+rxw‘

= 2 X L X w (one fin)

measure of the performance of a Various surface areas associated
finned surface than the effectiveness with a rectangular surface with,
of the individual fins. three fins.



Proper Lengthof aFin| 0,,  VipkA (T, — T.) tanhmL B
. — — — Lallll 7

I anng fin V f!ﬁ‘;’:}%{_ (1, — T.)
T - T(x) Thm_e variat_ion of heat transfer from
b a fin relative to that from an
AT = high | | infinitely long fin
&T:lowl AT=0 | a
_ : : mL — M — tanh mL
| | long fin
rw___l _________ | L 0.1 0.100
| | | 0.2 0.197
| | | 0.5 0.462
. | | Lo 1.0 0.762
High " Low | No | * 1.5 0.905
heat : heat : heat : 2.0 0.964
transfer | transfer | transfer | 2.5 0.987
| | | 3.0 0.995
T, ‘ I' " | 4.0 0.999
5.0 1.000

‘ ‘ ‘ ‘ mL =5 — an infinitely long fin

mL = 1 offer a good compromise
between heat transfer

Because of the gradual temperature drop verformance and the fin size

along the fin, the region near the fin tip makes
little or no contribution to heat transfer. 44



A common approximation used in the analysis of fins is to assume the fin
temperature to vary in one direction only (along the fin length) and the
temperature variation along other directions is negligible.

Perhaps you are wondering if this one-dimensional approximation is a
reasonable one.

This is certainly the case for fins made of thin metal sheets such as the fins
on a car radiator, but we wouldn’t be so sure for fins made of thick
materials.

Studies have shown that the error involved in one-dimensional fin analysis
is negligible (less than about 1 percent) when

”f < 0.2
where ¢ is the characteristic thickness of the fin, which is taken to
be the plate thickness ffor rectangular fins and the diameter D for
cylindrical ones.
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fin

Heat sinks: Specially
designed finned surfaces
which are commonly used in
the cooling of electronic
equipment, and involve one-
of-a-kind complex
geometries.

The heat transfer
performance of heat sinks is
usually expressed in terms of
their thermal resistances R.

A small value of thermal
resistance indicates a small
temperature drop across the
heat sink, and thus a high fin
efficiency.
T,— T,

o T - hﬁ‘ﬁn

New (1, — T2,

Combined natural convection and radiation thermal resistance of various
heat sinks used in the cooling of electronic devices between the heat sink and
the surroundings. All fins are made of aluminum 6063T-5, are black anodized,

and are 76 mm (3 in) long.

HS 5030

R = 0.9°C/W (vertical)
R = 1.2°C/W (horizontal)

Dimensions: 76 mm * 105 mm x 44 mm
Surface area: 677 cm?

R = 5°C/W

Dimensions: 76 mm * 38 mm x 24 mm
Surface area: 387 cm?

HS 6071

R = 1.4°C/W (vertical)
R = 1.8°C/W (horizontal)

Dimensions: 76 mm * 92 mm » 26 mm
Surface area: 968 cm?

HE 6105

R = 1.8°C/W (vertical)
R = 2.1°C/W (horizontal)

Dimensions: 76 mm x 127 mm x 91 mm
Surface area: 677 cm?

HS 6115

R = 1.1°C/W (vertical)
R = 1.2°C/W (horizontal)

Dimensions: 76 mm * 102 mm x 25 mm
Surface area: 929 cm?
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HEAT TRANSFER IN COMMON CONFIGURATIONS

So far, we have considered heat transfer in simple geometries such as large plane
walls, long cylinders, and spheres.

This is because heat transfer in such geometries can be approximated as one-
dimensional.

But many problems encountered in practice are two- or three-dimensional and
involve rather complicated geometries for which no simple solutions are available.
An important class of heat transfer problems for which simple solutions are
obtained encompasses those involving two surfaces maintained at constant
temperatures 7, and 7.

The steady rate of heat transfer between these two surfaces is expressed as

Q=SKT, —T,)

S. conduction shape factor
k. the thermal conductivity of the medium between the surfaces

The conduction shape factor depends on the geometry of the system only.
Conduction shape factors are applicable only when heat transfer between

the two surfaces is by conduction.

S = 1/kR Relationship between the Conduc?tlon 47
shape factor and the thermal resistance



Conduction shape factors 5 for several configurations for use in Q= k5(T) — T,) to determine the steady rate of heat
transfer through a medium of thermal conductivity k between the surfaces at temperatures 7, and T,

i 1) Isothermal cylinder of length L (2} Vertical isothermal cylinder of length L
buried in a semi-infinite medium buried in a semi-infinite medium T
(L>>Dand z > 1.5D) (L>>D) _ 2
,/"Tz = -
§= 2xL g e e L e §= 2l RRIE ) || N
In (42/D) R T UL In(4L/D) SEER = R A

i 3) Two parallel isothermal cylinders
placed in an infinite medium
(L==D. I, z)

(43 A row of equally spaced parallel isothermal
cylinders buried in a semi-infinite medium
(L==0 z and wz 1.500)

/— 3 T,
§= ;s'rL §= 2nL [
h-l(4F —Df—D% ln[ﬁ sinhE] l '
cosl 20,0, nh W

i per cylinder)

i 5) Circular isothermal cylinder of length L (6} Circular isothermal cylinder of length L
in the midplane of an infinite wall at the center of a square solid bar of the

iz =050 same length

L Tﬂ___

&

__omL . __amL
In(8z/7D)) _Q' In { 1.08w/D) 3 i




i(7) Eccentric circular 1sothermal cylinder
of length L in a cylinder of the same
length (L = I,

2ol
’Df+D§—4zZ]

cosh™! . E"DJ Dg

5=

(8} Large plane wall

(9) A long evlindrical layer

- 2mL
]r.l lDiu"IDJJ

(107 A square flow passage
(a) For afb = 1.4,

§—___ amL
0,93 In (0.948a/h)

(b)) Forafb = 1.41,

§= 2l

(LTES Iniafh)

i11) A spherical layer

§-_2rD\D;
D= D,

(12) Disk buried parallel to
the surface in a semi-infinite
medium (z == )

S=4D

(§=2Dwhenz=10)
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i13) The edge of two adjoining i 14) Corner of three walls

wills of equal thickness of equal thickness — e
A - P B I
/ s - -
T o - - =
- - - - - il
. A = - _ A
S=054w / s - S=0.15L Py e /
- i - 4 .y - S !
= - [ o | - ,.",I
{ L | f_,_."' |' L | :/.z T: -
| L r, S B NN Mg {outside) |
-~ R Y _}- | L I
[ _/'/ Y T— |
1 / \\ (inside) If‘_" | /
~ W
v - Lo ~
|~ \__ | B _f_:""
| ~
i 15) Isothermal sphere buried in a (16) Isothermal sphere buried
semi-infinite medium in a sermni-infinite medivm at T,
/ T, whose surface is insulated Insulated

- T (medium) -

= J) st L / ;
</ <

Once the value of the shape factor is known for a specific geometry, the
total steady heat transfer rate can be determined from the following
equation using the specified two constant temperatures of the two
surfaces and the thermal conductivity of the medium between them.

Q=SKT, —T,)



Summary

Steady Heat Conduction in Plane Walls
v' Thermal Resistance Concept
v' Thermal Resistance Network
v Multilayer Plane Walls
Thermal Contact Resistance
Generalized Thermal Resistance Networks
Heat Conduction in Cylinders and Spheres
v Multilayered Cylinders and Spheres
Critical Radius of Insulation
Heat Transfer from Finned Surfaces
v Fin Equation
v" Fin Efficiency
v Fin Effectiveness
v" Proper Length of a Fin
Heat Transfer in Common Configurations
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