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Objectives

Understand multidimensionality and time dependence of heat transfer,
and the conditions under which a heat transfer problem can be
approximated as being one-dimensional.

Obtain the differential equation of heat conduction in various
coordinate systems, and simplify it for steady one-dimensional case.

|dentify the thermal conditions on surfaces, and express them
mathematically as boundary and initial conditions.

Solve one-dimensional heat conduction problems and obtain the
temperature distributions within a medium and the heat flux.

Analyze one-dimensional heat conduction in solids that involve heat
generation.

Evaluate heat conduction in solids with temperature-dependent
thermal conductivity.




INTRODUCTION

Although heat transfer and temperature are closely related, they are of a
different nature.

Temperature has only magnitude. It is a scalar quantity.
Heat transfer has direction as well as magnitude. It is a vector quantity.

We work with a coordinate system and indicate direction with plus or minus
signs.
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The driving force for any form of heat transfer is the temperature
difference.

The larger the temperature difference, the larger the rate of heat
transfer.

Three prime coordinate systems:

Y FIGURE 2-3
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Steady versus Transient Heat Transfer

Steady implies no change
with time at any point within
the medium

iImplies variation
with time or time
dependence

In the special case of
variation with time but not
with position, the
temperature of the medium
changes uniformly with
time. Such heat transfer
systems are called lumped
systems.
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Transient and steady heat
conduction in a plane wall.




Multidimensional Heat Transfer

Heat transfer problems are also classified as being:
v

v two dimensional
v' three-dimensional

* In the most general case, heat transfer through a medium is three-
dimensional. However, some problems can be classified as two- or
one-dimensional depending on the relative magnitudes of heat
transfer rates in different directions and the level of accuracy desired.

« One-dimensional if the temperature in the medium varies in one
direction only and thus heat is transferred in one direction, and the
variation of temperature and thus heat transfer in other directions are
negligible or zero.

« Two-dimensional if the temperature in a medium, in some cases,
varies mainly in two primary directions, and the variation of
temperature in the third direction (and thus heat transfer in that
direction) is negligible.




FIGURE 2-5

Two-dimensional heat transfer
in a long rectangular bar.
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Heat transfer through the window
of a house can be taken to be
one-dimensional.
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The rate of heat conduction through a medium in a specified direction
(say, in the x-direction) is expressed by
for one-dimensional heat conduction as:

TA
: ~.dr T
Qa‘.uml i kA m (W) ( slope %{0
Heat is conducted in the direction N T(o)
of decreasing temperature, and
thus the temperature gradient is 0>0
negative when heat is conducted m
In the positive x -direction. I
>
X
FIGURE 2-7

The temperature gradient d7/dx is
simply the slope of the temperature
curve on a T-x diagram.




» The heat flux vector at a point P on .
the surface of the figure must be
perpendicular to the surface, and it
must point in the direction of
decreasing temperature

« |If nis the normal of the isothermal
surface at point P, the rate of heat
conduction at that point can be

expressed by as
P T _
0, = —fx',.—"x{,ij (W)
:
> Lo .o — FIGURE 2-8
Q,=0xi TQyj +0:k The heat transfer vector is always
normal to an isothermal surface and
- o aT - aT can be resolved into its components
O, = —kA, ax’ 0, = —kA, ay’ like any other vector.
: )
0. = —m_.‘q—?
L




Examples:
v electrical energy being converted to heat at a rate of I°R, Heat
v fuel.elements of nuclear reactors, Gen erati on
v’ exothermic chemical reactions.

Heat generation is a volumetric phenomenon.

The rate of heat generation units : \W/m* or Btu/h-ft3.

The rate of heat generation in a medium may vary with time as well as
position within the medium.
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EXAMPLE 2-1  Heat Generation in a Hair Dryer

The resistance wire of a 1200-W hair dryer is 80 cm long and has a diameter
of D = 0.3 cm (Fig. 2-11). Determine the rate of heat generation in the wire
per unit volume, in W/cm?, and the heat flux on the outer surface of the wire
as a result of this heat generation.

SOLUTION The power consumed by the resistance wire of a hair dryer is
given. The heat generation and the heat flux are to be determined.
Assumptions Heat is generated uniformly in the resistance wire.

Analysis A 1200-W hair dryer converts electrical energy into heat in the wire
at a rate of 1200 W. Therefore, the rate of heat generation in a resistance wire
s equal to the power consumption of a resistance heater. Then the rate of heat
generation in the wire per unit volume is determined by dividing the total rate
of heat generation by the volume of the wire,

i E gen E gen 1200 W
E = = =
=y (#DYHL  [#(0.3 cm)¥4](80 cm)

wire

= 212 W/em?

Similarly, heat flux on the outer surface of the wire as a result of this heat
generation is determined by dividing the total rate of heat generation by the
surface area of the wire,

Epi Eg 1200 W

= = = 15.9 W/cm?
A DL (0.3 cm)(80 cm)

0=

wire

Discussion Note that heat generation is expressed per unit volume in W/cm?
or Btu/h-ft*, whereas heat flux is expressed per unit surface area in W/cm? or
Btu/h-ft2.

Hair dryer
1200W

FIGURE 2-11
Schematic for Example 2-1.



ONE-DIMENSIONAL HEAT CONDUCTION
EQUATION

Consider heat conduction through a large plane wall such as the wall of a
house, the glass of a single pane window, the metal plate at the bottom of
a pressing iron, a cast-iron steam pipe, a cylindrical nuclear fuel element,
an electrical resistance wire, the wall of a spherical container, or a
spherical metal ball that is being quenched or tempered.

Heat conduction in these and many other geometries can be
approximated as being one-dimensional since heat conduction through
these geometries is dominant in one direction and negligible in other
directions.

Next we develop the onedimensional heat conduction equation in
rectangular, cylindrical, and spherical coordinates.
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One-dimensional heat conduction
through a volume element
in a long cylinder.
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Heat Conduction Equation
In a Sphere

Variable conductivity:
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FIGURE 2-16

One-dimensional heat conduction
through a volume element in a sphere.
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Combined One-Dimensional Heat Conduction
Equation

An examination of the one-dimensional transient heat conduction
equations for the plane wall, cylinder, and sphere reveals that all
three equations can be expressed in a compact form as

F )
—— T J + r’ — ‘ri{"f,_T
8]

n = 0 for a plane wall
n = 1 for a cylinder

n = 2 for a sphere

In the case of a plane wall, it is customary to replace the variable
r by x.

This equation can be simplified for steady-state or no heat
generation cases as described before.
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EXAMPLE 2-2 Heat Conduction through the Bottom of a Pan

Consider a steel pan placed on top of an electric range to cook spaghetti
(Fig. 2-17). The bottom section of the pan is 0.4 cm thick and has a diameter
of 18 cm. The electric heating unit on the range top consumes 800 W of power
during cooking, and 80 percent of the heat generated in the heating element
is transferred uniformly to the pan. Assuming constant thermal conductivity,
obtain the differential equation that describes the variation of the temperature

in the bottom section of the pan during steady operation. T T T T T T T T T

SOLUTION A steel pan placed on top of an electric range is considered. The 800 W

differential equation for the variation of temperature in the bottom of the pan FIGURE 2-17
is to be obtained. )
Analysis The bottom section of the pan has a large surface area relative to its Schematic for Example 2-2.

thickness and can be approximated as a large plane wall. Heat flux is applied
to the bottom surface of the pan uniformly, and the conditions on the inner sur-
face are also uniform. Therefore, we expect the heat transfer through the bot-
fom section of the pan to be from the bottom surface toward the top, and heat
transfer in this case can reasonably be approximated as being one-dimensional.
Taking the direction normal to the bottom surface of the pan to be the x-axis,
we will have T = T(x) during steady operation since the temperature in this
case will depend on x only.

The thermal conductivity is given to be constant, and there is no heat gen-
eration in the medium (within the bottom section of the pan). Therefore, the
differential equation governing the variation of temperature in the bottom sec-
tion of the pan in this case is simply Eq. 2-17,

d’T
{h':

0

which is the steady one-dimensional heat conduction equation in rectangular
coordinates under the conditions of constant thermal conductivity and no heat
generation.

Discussion Note that the conditions at the surface of the medium have no
effect on the differential equation.




EXAMPLE 2-3 Heat Conduction in a Resistance Heater

A 2-KW resistance heater wire with thermal conductivity kK = 15 W/m-K, diam-
eter D = 0.4 cm, and length L = 50 cm is used to boil water by immersing
it in water (Fig. 2-18). Assuming the variation of the thermal conductivity of
the wire with temperature to be negligible, obtain the differential equation that
describes the variation of the temperature in the wire during steady operation.

SOLUTION The resistance wire of a water heater is considered. The differential
equation for the variation of temperature in the wire is to be obtained.
Analysis The resistance wire can be considered to be a very long cylinder since
its length is more than 100 times its diameter. Also, heat is generated uni-
formly in the wire and the conditions on the outer surface of the wire are uni-
form. Therefore, it is reasonable to expect the temperature in the wire to vary
in the radial r direction only and thus the heat transfer to be one-dimensional.
Then we have T = T(r) during steady operation since the temperature in this
case depends on ronly.

The rate of heat generation in the wire per unit volume can be determined
from

_ Ep Epon 2000 W

€pon = 5 = = 0.318 = 10° W/m?
e T T (@DYOL  [#(0.004 m)Y4](0.5 m)

N{Jtil'lg that the thermal EDI'IUUCTW“}’ is given to be constant, the differential
equatiﬂn that governs the wvariation of temperature in the wire is Sifﬂpl}f
Eq. 2-27,

I -:.!I l'-. -!u!l-.lr 3 E-I:_ e

e J— . = (]

rar\"ar) T

which is the steady one-dimensional heat conduction equation in cylindrical
coordinates for the case of constant thermal conductivity.

Discussion Note again that the conditions at the surface of the wire have no
effect on the differential equation.

H— Resistance
heater

FIGURE 2-18
Schematic for Example 2-3.




EXAMPLE 24 Cooling of a Hot Metal Ball in Air

A spherical metal ball of radius R is heated in an oven to a temperature
of 300°C throughout and is then taken out of the oven and allowed to
cool in ambient air at T, = 25°C by convection and radiation (Fig. 2-19).
The thermal conductivity of the ball material is known to vary linearly with
temperature. Assuming the ball is cooled uniformly from the entire outer
surface, obtain the differential equation that describes the variation of the
temperature in the ball during cooling.

SOLUTION A hot metal ball is allowed to cool in ambient air. The differential
equation for the variation of temperature within the ball is to be obtained.
Analysis The ball is initially at a uniform temperature and is cooled uniformly
from the entire outer surface. Also, the temperature at any point in the ball
changes with time during cooling. Therefore, this is a one-dimensional tran-
sient heat conduction problem since the temperature within the ball changes
with the radial distance r and the time t. That is, T= T{r, {).

The thermal conductivity is given to be variable, and there is no heat genera-
tion in the ball. Therefore, the differential equation that governs the variation
of temperature in the ball in this case is obtained from Eq. 2-30 by setting the
heat generation term equal to zero. We obtain

——|r = pc—
; dl

L a [, _afj T
rrar \ ar

which is the one-dimensional transient heat conduction equation in spherical
coordinates under the conditions of variable thermal conductivity and no heat
generation.

Discussion Note again that the conditions at the outer surface of the ball have
no effect on the differential equation.

Metal ball

300°C

FIGURE 2-18
Schematic for Example 2-4.



GENERAL HEAT CONDUCTION EQUATION

In the last section we considered one-dimensional heat conduction
and assumed heat conduction in other directions to be negligible.

Most heat transfer problems encountered in practice can be
approximated as being one-dimensional, and we mostly deal with
such problems in this text.

However, this is not always the case, and sometimes we need to
consider heat transfer in other directions as well.

In such cases heat conduction is said to be multidimensional, and
In this section we develop the governing differential equation in
such systems in rectangular, cylindrical, and spherical coordinate

systems.
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Rectangular Coordinates

Rateof heat | /Rateofheat| [ Rate of change |
Rate of heat : )
conduction at conduction generation | _ | of the energy
. v. and 7 at x + Ax, inside the content of
s AREL v+ Ay,and z + Az element the element

or

- . - - . . : _ "iEc]cmenl
Q;: + Qm + Q; - Q.r + Ay T Q_v + Ay T Q; + Az + Egtn. clement At (2-36)

Noting that the volume of the element is Vyjapen = AxAvAz, the change in the
energy content of the element and the rate of heat generation within the ele-
ment can be expressed as

"j'-Ecltnwnl = E: +Ar E: = ”3('”: +Ar ]I'-r-:I = .I”t?ﬁ*r"i.""'ﬁ:[ T; + Ar TJ']
Egcn. clement — E!",n_:p:n II"‘I:cl.n:nuzl:ut = égcnﬁ:"-ﬁjlm

Substituting into Eq. 2-36, we get

: : Tox—T
Qi+ 0y +0:= Ouine = Qysay — Oz act oenlArAYAZ = prdrdyds —2—

At
Dividing by AvAyAz gives
1 0,0, — O, 1 (-.1+m '? 1 '.‘—j".:ﬂn.:_Q-: teo =
AvAz Ax AxAz Ay ﬁxﬂu' Az e FIGURE 2-20
Toons—T Three-dimensional heat conduction
—_ (2-37)

PC At through a rectangular volume element.
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Noting that the heat lrzm%l‘::r areas of the element for heat conduction in the
x, v, and z directions are A, = AyAz, A, = AxAz, and A, = AxAy, respectively,
and taking the limit as _“‘ax _“h Az and &r — 0 yields

faT o '_1JT - £ N E
H_1||El111| 11_1 1'l|+J"|'IE‘1 |+{ 1 X di (2-38)

since. from the definition of the derivative and Fourier’s law of heat
conduction,

0l Qua— 0, 1 80, ] AT\ o, aT
W AvAz Ax  AyAz ax ~ AyAz E¥k_kﬁ vz gy | = _ﬁ?kkEIJ
. Q\' Av T Q\ HQ\ '~ 2 g
lim — L i — — l —I—kﬂrﬁi—?;]=—ilfk£]
ay—0 AxAz Ay AxAz oy ~ AxAZ ay | ay | dy | dy )
1 Qua— 0. 80, aT\ 8 (,aT)
lim - LY _9 1,

a2—0 AxAy Az AxAy 92 &t&xﬂq[ KAxdy :J azkﬂazj

Eq. 2-38 1s the general heat conduction equation in rectangular coordinates.
In the case of constant thermal conductivity. it reduces to

ol "'J..-' o2 {:5"\:” ':J

0T o1 o1 feen 197 (2-39)

axt o= P Vi k o dl

where the property a = k/pc is again the thermal diffusivity of the material.
Eq. 2-39 is known as the Fﬂllll’lEI’ Biot equation. and it reduces to these
forms under specified conditions:

24




(1) Steadvy-state: 02T N 02T

(called the Poisson equation) x>  9y* 07’ K
(2) Transient, no heat generation: 0°T N °T | 0°T 10T
(called the diffusion equation) ax>  9y*  09z2  «a 01
(3) Steady-state, no heat generation: 0°T N 0°T = o’T 0
(called the Laplace equation) x>  9y* 07’
(K -

The three-dimensional heat
conduction equations reduce to
the one-dimensional ones when

the temperature varies in one
dimension only.
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Cylindrical Coordinates

Relations between the coordinates of a point in rectangular
and cylindrical coordinate systems:

X =rcos o, y = rsin ¢, and 72=1
| a / a7\ | 0T ! aoT d [ oT\ . oT
— | kr — | T — - k — + — | k— | T Coon — PC 7
Farh ar | = A oh az\ o7 | = ot
l AT
-
dz \“\?‘\xr'aﬁ_ﬁ
¥ \ N ~ _:'_J.L-'{;}.
\Ey—
z N
Ny |
N
.-"'f'r'! A \M_\::‘ F
7 N )
e TR =
f —— g 0
FIGURE 2-22
A differential volume element in
26
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Spherical Coordinates

Relations between the coordinates of a point in rectangular
and spherical coordinate systems:

X = rcos ¢ sin 6, y = rsin ¢ sin 6, and 7 = cos 6

r

1 o /(. ,oT) | 0 oT | o (. . 0T , aT
- —| kr=— | T - k— )+ —— - ksin— | + €oon — PC —
r=dr ar | r<sin“ 0 0¢ dch = sin @ 06 e, = ol

FIGURE 2-23

A differential volume element in
spherical coordinates.
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EXAMPLE 2-5 Heat Conduction in a Short Cylinder | Heat

loss

|
A short cylindrical metal billet of radius R and height b is heated in an oven to //_,,_F|
a temperature of 300°C throughout and is then taken out of the oven and al-
lowed to cool in ambient air at 7. = 20°C by convection and radiation. Assum-
ing the billet is cooled uniformly from all outer surfaces and the variation of Metal
the thermal conductivity of the material with temperature is negligible, obtain billet |
the differential equation that describes the variation of the temperature in the H
billet during this cooling process.

SOLUTION A short cylindrical billet is cooled in ambient air. The differential
equation for the variation of temperature is to be obtained.
Analysis The billet shown in Fig. 2-24 is initially at a uniform temperature
and is cooled uniformly from the top and bottom surfaces in the z-direction
as well as the lateral surface in the radial r~direction. Also, the temperature at
any point in the ball changes with time during cooling. Therefore, this is a two- FIGURE 2-24
dimensional transient heat conduction problem since the temperature within Schematic for Example 2-5.
the billet changes with the radial and axial distances r and z and with time ¢
That is, T= T(r, z, 1).

The thermal conductivity is given to be constant, and there is no heat gen-
eration in the billet. Therefore, the differential equation that governs the varia-
tion of temperature in the billet in this case is obtained from Eq. 2-43 by
setting the heat generation term and the derivatives with respect to ¢ equal to
zero. We obtain

T, =20°C

|

- 0 Pt —
al N ds ol

1 @ | er) a JI} aT

In the case of constant thermal conductivity, it reduces to

1 a ( dT) aT 1 aT
— | r— | + — = ——
Far dar az- o af

which is the desired equation. : - 28

Discussion MNote that the boundary and initial conditions have no effect on
the differential equation.




BOUNDARY AND INITIAL CONDITIONS

The description of a heat transfer problem in a medium is not complete without a full
description of the thermal conditions at the bounding surfaces of the medium.

Boundary conditions: The mathematical expressions of the thermal conditions at the

boundaries.

The temperature at any
point on the wall at a
specified time depends
on the condition of the
geometry at the
beginning of the heat
conduction process.

Such a condition, which
Is usually specified at
time t =0, is called the
initial condition, which
Is a mathematical
expression for the
temperature distribution
of the medium initially.

Tix, v, 2,0) = fix, v, 2)

The differential equation:
d’T
——=0
dx-
General solution:
T[.'l-.:' = {._‘l.'f + {._‘3
A
-
L
Arbitrary constants
Some specific solutions:
Tx)=2x+35
Tix)==x+12
Tix)=-3
Tix)=6.2x

FIGURE 2-25

The general solution of a typical

differential equation involves
arbitrary constants, and thus an
infinite number of solutions.

"

_—r Some solutions of
‘I- ,'II dx=
L |
|
///)T"

S0°C l\
¥ 15°C
|

—— The only solution
7 x that satisfies
the conditions
T(0) = 50°C
and T(L) = 15°C.

FIGURE 2-26

To describe a heat transfer problem

completely, two boundary conditions
must be given for each direction along
which heat transfer 1s significant.




Boundary Conditions

Specified Temperature Boundary Condition
Specified Heat Flux Boundary Condition
Convection Boundary Condition

Radiation Boundary Condition

Interface Boundary Conditions

Generalized Boundary Conditions
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1 Specified Temperature Boundary Condition

The temperature of an exposed surface
can usually be measured directly and
easily.

Therefore, one of the easiest ways to
specify the thermal conditions on a surface 04 |
IS to specify the temperature. L x

For one-dimensional heat transfer through

150°C T(x, 1) 70°C

a plane wall of thickness L, for example, 10, 1 = ':’”'_'_C
the specified temperature boundary I(L, 1) =70°C
conditions can be expressed as
P FIGURE 2-27
10,1 =T, Specified temperature boundary
T(L. 1) = T- conditions on both surfaces

of a plane wall.
where T, and T, are the specified

temperatures at surfaces at x = 0 and
X = L, respectively.

The specified temperatures can be
constant, which is the case for steady

heat conduction, or may vary with time. 31




2 Specified Heat Flux Boundary Condition

The heat flux in the positive x-direction anywhere in the
medium, including the boundaries, can be expressed by

. 0T " Heat flux in the (W/m2) Heat _
4= dx  \positive x — direction YA fux | Conduction
; : . k@T(U. 1)
For a plate of thickness L subjected to heat U
flux of 50 W/m? into the medium from both | Heat
sides, for example, the specified heat flux Conduction|  flux
boundary conditions can be expressed as ) )
K IT(L, 1) _ ;
a7, 1) OT(L, 1) i ox L
—k——— =50 and —k —— = —50
oX ox
0 T >
L X
FIGURE 2-28

Specified heat flux boundary
conditions on both surfaces
of a plane wall.
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Special Case: Insulated Boundary

A well-insulated surface can be modeled
as a surface with a specified heat flux of
zero. Then the boundary condition on a
perfectly insulated surface (at x = 0, for
example) can be expressed as

a7(0, 1y aT(0, 1y
k — =0 or - =0
ox ox

On an insulated surface, the first
derivative of temperature with respect
to the space variable (the temperature
gradient) in the direction normal to the
insulated surface is zero.

ad <
Insulation T(x. 1) 60°C
0fe .L :
aT(0. 1) _
dx
T(L. 1) =60°C
FIGURE 2-29

A plane wall with insulation
and specified temperature
boundary conditions.
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Another Special Case: Thermal Symmetry

Some heat transfer problems possess thermal
symmetry as a result of the symmetry in imposed
thermal conditions.

,— Center plane

For example, the two surfaces of a large hot plate Zero
of thickness L suspended vertically in air is slope | Temnerature
subjected to the same thermal conditions, and thus /’\< L";“.Iih'u;im
the temperature distribution in one half of the plate (symmetric
IS the same as that in the other half. | about center
That is, the heat transfer problem in this plate planc)
possesses thermal symmetry about the center
plane at x = L/2. O¢ 0 7 x
Therefore, the center plane can be viewed as an Z
insulated surface, and the thermal condition at this IT(LI2.1) _
plane of symmetry can be expressed as ox
aT(L/2. 1) FIGURE 2-30
- =
0 Thermal symmetry boundary

condition at the center plane
of a plane wall.
34

which resembles the insulation or zero heat
flux boundary condition.




EXAMPLE 2-6 Heat Flux Boundary Condition

Consider an aluminum pan used to cook beef stew on top of an electric range.
The bottom section of the pan is L = 0.3 cm thick and has a diameter of D =
20 cm. The electric heating unit on the range top consumes 800 W of power
during cooking, and 90 percent of the heat generated in the heating element
is transferred to the pan. During steady operation, the temperature of the inner
surface of the pan is measured to be 110°C. Express the boundary conditions
for the bottom section of the pan during this cooking process.

SOLUTION An aluminum pan on an electric range top is considered. The
boundary conditions for the bottom of the pan are to be obtained.
Analysis The heat transfer through the bottom section of the pan is from the
bottom surface toward the top and can reasconably be approximated as being
one-dimensional. We take the direction normal to the bottom surfaces of the
pan as the x axis with the origin at the outer surface, as shown in Fig. 2-31.
Then the inner and outer surfaces of the bottom section of the pan can be
represented by x = 0 and x = L, respectively. During steady operation, the
temperature will depend on x only and thus T = T(x).

The boundary condition on the outer surface of the bottom of the pan at
x = 0 can be approximated as being specified heat flux since it is stated that
90 percent of the 800 W (i.e., 720 W) is transferred to the pan at that surface.
Therefore,

dT(0)
dx

K r I

where

- Heat transfer rate - 0.720 KW
"~ Bottom surface area  a(0.1 m)?2

do = 22.9 KW/m?

The temperature at the inner surface of the bottom of the pan is specified to
be 110°C. Then the boundary condition on this surface can be expressed as

(L) 110°C

where [ = 0.003 m.

Discussion MNote that the determination of the boundary conditions may require
some reasoning and approximations.

1% ;ﬂm

FIGURE 2-31

Schematic for Example 2—-6.
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3 Convection Boundary Condition

For one-dimensional heat transfer in the x-direction
in a plate of thickness L, the convection boundary
conditions on both surfaces:

at the surface in
‘the same direction

at the surface ina | =

' Heat conduction )
selected direction

| Heat convection )

a7(0, 1) _ oT(L. 1
—A——h][TL] 110, 1)] —A——h S| T(L. 1) — T,5]
oxX ox -
Convection | Conduction L Convection | Conduction
2
T.
JT(0. t 2 B _ 970, n
W [T, — T, ] =—k (0. 1) [Ty = T(O, ] =~k =52
X
h,. T,
h Conduction | Convection
T * Convection | Conduction
%]
dI(L.t .
ox IIT(O, 1) = Tyl = k=552
()® >
L X () I‘L E
FIGURE 2-32 FIGURE 2-33
Convection boundary conditions on = The assumed direction of heat transfer
the two surfaces of a plane wall. at a boundary has no effect on the 36

boundary condition expression.




EXAMPLE 2-7  Convection and Insulation Boundary Conditions

Steam flows through a pipe shown in Fig. 2-34 at an average temperature
of 7. = 200°C. The inner and outer radii of the pipearey =8cmand r, =
8.5 cm, respectively, and the outer surface of the pipe is heavily insulated. If
the convection heat transfer coefficient on the inner surface of the pipeis h =
65 W/m?.K, express the boundary conditions on the inner and outer surfaces
of the pipe during transient periods.

SOLUTION The flow of steam through an insulated pipe is considered.
The boundary conditions on the inner and outer surfaces of the pipe are to be
obtained.
Analysis During initial transient periods, heat transfer through the pipe mate-
rial predominantly is in the radial direction, and thus can be approximated as
being one-dimensional. Then the temperature within the pipe material changes
with the radial distance r and the time t. That is, T = Ti{r, 1.

It is stated that heat transfer between the steam and the pipe at the inner
surface is by convection. Then taking the direction of heat transfer to be the
positive rdirection, the boundary condition on that surface can be expressed as

IT(r,. 1)
k

AT, — Tir))]

ar

The pipe is said to be well insulated on the outside, and thus heat loss through
the outer surface of the pipe can be assumed to be negligible. Then the bound-
ary condition at the outer surface can be expressed as

al(r,, f)

()

dar

Discussion Note that the temperature gradient must be zero on the outer sur-
face of the pipe at all times.

Insulation

FIGURE 2-34

Schematic for Example 2-7.
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4 Radiation Boundary Condition

Radiation boundary condition on a surface:

Heat conduction Radiation exchange
at the surface ina | = at the surface in
selected direction/ | the same direction |

For one-dimensional heat transfer in the
x-direction in a plate of thickness L, the
radiation boundary conditions on both
surfaces can be expressed as

dT(0, 1) o

— T = g,0T 4. 1 — T(O, 1)°]
aT(L, 1)

—k———=¢g,0o|T(L.t)y* — T2, 5]

X - .

Radiation | Conduction

, o 10, 1)
£0 [Ta,1 — 10, %] = -k %r—

SUTT,

2

€, £,
surr, |
Conduction | Radiation
. aTgi 2 - EEU[ L, ”4 - Tﬁirr. '2|
1 L x
FIGURE 2-35

Radiation boundary conditions on

both surfaces of a plane wall.
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5 Interface Boundary Conditions

The boundary conditions at an interface Interface
are based on the requirements that /
Material Material

A B

Ty(xg. 1) =Tglxy. 1)

(1) two bodies in contact must have the
same temperature at the area of contact
and

(2) an interface (which is a surface)
cannot store any energy, and thus the
heat flux on the two sides of an interface
must be the same.

TA(.Y‘ -” TB(I‘ '”

pe i Conduction | Conduction
The boundary conditions at the interface

of two bodies A and B in perfect contact at T ,(xy. 1) ITa(x0. 1)

X = X, can be expressed as _kAT =—kp —
0% - ‘- >
. _ Yo L x

T.E{-Ill”- Irl - T].’_{{-Ill”. Irl
FIGURE 2-36
—k 0TaXo. 1) = —k, OTpxo. 1) Boundary conditions at the interface
A oA b 0x

of two bodies in perfect contact.
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6 Generalized Boundary Conditions

In general, however, a surface may involve convection,
radiation, and specified heat flux simultaneously.

The boundary condition in such cases is again obtained
from a surface energy balance, expressed as

Heat transfer Heat transfer
to the surface | = | from the surface
n all modes 1n all modes

40




EXAMPLE 2-8 Combined Convection and Radiation Condition

A spherical metal ball of radius r, is heated in an oven to a temperature of
300°C throughout and is then taken out of the oven and allowed to cool in
ambient air at 7., = 27°C, as shown in Fig. 2-37. The thermal conductivity of
the ball material is k = 14.4 W/m-K, and the average convection heat transfer
coefficient on the outer surface of the ball is evaluated to be i = 25 W/m*-K.
The emissivity of the outer surface of the ball is £ = 0.6, and the average
temperature of the surrounding surfaces is T, = 290 K. Assuming the ball is
cooled uniformly from the entire ocuter surface, express the initial and bound-
ary conditions for the cooling process of the ball.

. . . ) . FIGURE 2-37
SOLUTION The cooling of a hot spherical metal ball is considered. The initial Schemalichn Brimple? 8.

and boundary conditions are to be obtained.

Analysis The ball is initially at a uniform temperature and is cooled uniformly
from the entire outer surface. Therefore, this is a one-dimensional transient
heat transfer problem since the temperature within the ball changes with
the radial distance r and the time . That is, T = T{(r, #). Taking the moment
the ball is removed from the oven to be £ = 0, the initial condition can be
expressed as

I(r, ) I'; = 300°C
The problem possesses symmetry about the midpoint (r = 0) since the iso-

therms in this case are concentric spheres, and thus no heat is crossing the
midpoint of the ball. Then the boundary condition at the midpoint can be

expressed as

aT(0, )
The heat conducted to the outer surface of the ball is lost to the environment
by convection and radiation. Then taking the direction of heat transfer to be

the positive r direction, the boundary condition on the outer surface can be
expressed as

L,

41
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——— = h[T(r,) — T.] + eo[T(r,y* — T%,.]
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EXAMPLE 2-9 Combined Convection, Radiation, and Heat Flux

Consider the south wall of a house that is L = 0.2 m thick. The outer surface
of the wall is exposed to solar radiation and has an absorptivity of @« = 0.5 for
solar energy. The interior of the house is maintained at 7., = 20°C, while the
ambient air temperature outside remains at 7., = 5°C. The sky, the ground,
and the surfaces of the surrounding structures at this location can be modeled
as a surface at an effective temperature of Ty, = 255 K for radiation exchange
on the outer surface. The radiation exchange between the inner surface of
the wall and the surfaces of the walls, floor, and ceiling it faces is negligible.
The convection heat transfer coefficients on the inner and the outer surfaces
of the wall are h; = 6 W/m?-K and h, = 25 W/m?-K, respectively. The thermal
conductivity of the wall material is k = 0.7 W/m-K, and the emissivity of the
outer surface is e; = 0.9. Assuming the heat transfer through the wall to be

steady and one-dimensional, express the boundary conditions on the inner and  w—) ——) =

the outer surfaces of the wall.

SOLUTION The wall of a house subjected to solar radiation is considered.
The boundary conditions on the inner and outer surfaces of the wall are to be
obtained.

Tl
Inner Swu:]tlh _531"#
surface A
Conduction Solar
hy S
)
T, c
o | qéﬂb
h
Ter
Convection |Conduction| Outer
surface
1] I >
FIGURE 2-38

Schematic for Example 2-9.
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Analysis We take the direction normal to the wall surfaces as the x-axis with
the origin at the inner surface of the wall, as shown in Fig. 2-38. The heat
transfer through the wall is given to be steady and one-dimensional, and thus
the temperature depends on x only and not on time. That is, T = T(x).

The boundary condition on the inner surface of the wall at x = O is a typical
convection condition since it does not involve any radiation or specified heat
flux. Taking the direction of heat transfer to be the positive x-direction, the
boundary condition on the inner surface can be expressed as

dT(0)

—K

— = [T, — T(0)]

ax

The boundary condition on the outer surface at x = 0 is quite general as it

involves conduction, convection, radiation, and specified heat flux. Again tak-

ing the direction of heat transfer to be the positive x-direction, the boundary
condition on the outer surface can be expressed as

dT(L)

f
M

o [T(L) — Tn] + &0 [TIL)Y? — To] — s
d .

where g, is the incident solar heat flux.

Discussion Assuming the opposite direction for heat transfer would give the
same result multiplied by —1, which is equivalent to the relation here. All the
guantities in these relations are known except the temperatures and their de-
rivatives at the two boundaries.

'\_,_,_\__\-}
Tsk}' - \_\_\
oy
Sun
>
Inner SD:]‘lh _33'}#
surface W *
hy G
i,
Tx-l :C}:{?
]
.Irf:
T'\:Z
Convection |Conduction — Outer
- _ surface
0 I >
FIGURE 2-38

Schematic for Example 2-9.
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SOLUTION OF STEADY ONE-DIMENSIONAL
HEAT CONDUCTION PROBLEMS

In this section we will solve a wide range of heat
conduction problems in rectangular, cylindrical,
and spherical geometries.

We will limit our attention to problems that result
In ordinary differential equations such as the
steady one-dimensional heat conduction
problems. We will also assume constant thermal
conductivity.

The solution procedure for solving heat
conduction problems can be summarized as

(1) formulate the problem by obtaining the
applicable differential equation in its simplest
form and specifying the boundary conditions,

(2) Obtain the general solution of the differential
equation, and

(3) apply the boundary conditions and determine
the arbitrary constants in the general solution.

Heat transfer problem

v

Mathematical formulation
(Differential equation and |
boundary conditions)

General solution of differential equation

v

\  Application of boundary conditions

v

7 Solution of the problem
|

FIGURE 2-39

Basic steps involved in the solution
of heat transfer problems.
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EXAMPLE 2-10 Heat Conduction in a Plane Wall

Consider a large plane wall of thickness L = 0.2 m, thermal conductivity k =
1.2 W/m-K, and surface area A = 15 m2. The two sides of the wall are main-
tained at constant temperatures of 7, = 120°C and 7, = b0°C, respectively, as
shown in Fig. 2-40. Determine (&) the variation of temperature within the wall
and the value of temperature at x = 0.1 m and (&) the rate of heat conduction
through the wall under steady conditions.

SOLUTION A plane wall with specified surface temperatures is given. The
variation of temperature and the rate of heat transfer are to be determined.
Assumptions 1 Heat conduction is steady. 2 Heat conduction is one-
dimensional since the wall is large relative to its thickness and the thermal
conditions on both sides are uniform. 3 Thermal conductivity is constant.
4 There I1s no heat generation.

Properties The thermal conductivity is given to be k = 1.2 W/m-K.

Analysis (a) Taking the direction normal to the surface of the wall to be the
x-direction, the differential equation for this problem can be expressed as

with boundary conditions

T(0) = T, = 120°C
(L) = T, = 50°C

The differential equation is linear and second order, and a quick inspection of
It reveals that it has a single term involving derivatives and no terms involving
the unknown function T as a factor. Thus, it can be solved by direct integration.
MNoting that an integration reduces the order of a derivative by one, the general
solution of the differential equation above can be obtained by two simple suc-
cessive integrations, each of which introduces an integration constant.

Flane
wall
- R
T, T
0 . x
FIGURE 240

Schematic for Example 2-10.
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Integrating the differential equation once with respect to x yields

where C; Is an arbitrary constant. Notice that the order of the derivative went
down by one as a result of integration. As a check, if we take the derivative of
this equation, we will obtain the original differential equation. This equation Is
not the solution yet since it involves a derivative.

Integrating one more time, we obtain
HI) = Cll + C_g

which is the general solution of the differential equation (Fig. 2-41). The gen-
eral solution in this case resembles the general formula of a straight line whose
slope Is C; and whose value at x = O is C.. This is not surprising since the sec-
ond derivative represents the change in the slope of a function, and a zero sec-
ond derivative Indicates that the slope of the function remains constant.
Therefore, any straight line is a solution of this differential equation.

The general solution contains two unknown constants C; and Cs, and thus
we need two equations to determine them uniquely and obtain the specific so-
lution. These equations are obtained by forcing the general solution to satisfy
the specified boundary conditions. The application of each condition yields one
equation, and thus we need to specify two conditions to determine the con-
stants C,; and Co.

When applying a boundary condition to an equation, all occurrences of the
dependent and independent variables and any derivatives are replaced by the
specified values. Thus the only unknowns in the resulting equations are the ar-
bitrary constants.

The first boundary condition can be interpreted as in the general solution, re-
place all the x's by zero and T(x) by T,. That is (Fig. 2-42),

T(U)=C]>{G+C; — C2=T1

Integrate:
a7 _ G
dx
Integrate again:
Tx)=Cix+ G,
General Arbitrary
solution constants

FIGURE 241

Obtaining the general solution of a
simple second order differential
equation by integration.
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The second boundary condition can be interpreted as in the general solution,
replace all the x's by L and T(x) by T,. That Is,

I, —T
ML=CcL+C, - T,=CL+T, — C/ = -
Substituting the C, and C, expressions into the general solution, we obtain
T T|
T(x) =— 7 x+ T, (2-56)

which Is the desired solution since it satisfies not only the differential equation
but also the two specified boundary conditions. That is, differentiating
Eq. 2-56 with respect to x twice will give d?T/dx?, which is the given differential
equation, and substituting x = 0 and x = L into Eq. 2-56 gives T(0) = T; and
T(L) = T, respectively, which are the specified conditions at the boundaries.

Substituting the given information, the value of the temperature at x =
0.1 m is determined fo be

(50 — 120)°C
0.2m

(b) The rate of heat conduction anywhere in the wall is determined from
Fourier's law to be

T(0.1 m) =

(0.1 m) + 120°C = 85°C

. dr_ . LI T~
Q yatl = HE— KAC, = —kA T = kA 7
The numerical value of the rate of heat conduction through the wall is deter-
mined by substituting the given values to be
Dl lawmkys my (22220
. 2WmKXDm) 5o

Discussion Note that under steady conditions, the rate of heat conduction
through a plane wall is constant.

(2-57)

0 = kA

= 6300 W

o X
Boundary condition. |
oy =T,
General solution:
x)=Cix+C,4

Applving the boundary condition:
T{.-r} = Cl;{- T+ CE

T 1
0 0
Tl

Substituting:
(/*TJ =CIX{}+ Cz—}szTl

- It cannot involve x or T(x) after the
boundary condition is applied.

k. J
FIGURE 242

When applying a boundary condition
to the general solution at a specified
point, all occurrences of the dependent
and independent variables should

be replaced by their specified

values at that point.




EXAMPLE 2-11 A Wall with Various Sets of Boundary
Conditions

Consider steady one-dimensional heat conduction in a large plane wall of
thickness L and constant thermal conductivity k with no heat generation.
Obtain expressions for the variation of temperature within the wall for the fol-
lowing pairs of boundary conditions (Fig. 2-43):

dT(0)
(a) —k — Go = 40 W/cm? and T(0) = T, = 15°C
(b) —k 41(0) j 40 W/cm? d k 1) j 25 W/cm?
—k———= = cm an —k——— = = = cm
dx 9o dx qr
dr)y , drir) . >
(c) —k oy Go = 40 W/cm and —k T G; = Go= 40 W/cm
—> Plane —> Plane «— —> Plane —>
—> wall —> wall « —> wall —>
40 W/em? ™~ 7 40 Wiem? 7] < 40 W/em? 7 _"
7 T(x) 7 T(x) < 7 T(x) >
—) — «— 25 W/em? —>) > 40 W/em?

(a) (b) ()



Analysis This is a steady one-dimensional heat conduction problem with con-
stant thermal conductivity and no heat generation in the medium, and the heat
conduction equation in this case can be expressed as (Eq. 2-17)

d2T
az

whose general solution was determined in the previous example by direct in-
tegration to be

T(x) = Cyx + C,

where C; and C, are two arbitrary integration constants. The specific solutions
corresponding to each specified pair of boundary conditions are determined
as follows.

(a) In this case, both boundary conditions are specified at the same boundary at
x = 0, and no boundary condition is specified at the other boundary at x = L.
Noting that

ar _

& ©

the application of the boundary conditions gives

diio) . q
_-’f?=fm — —kCy=4¢gy — C;= _f

and
TmMm=1T, - T,=C,x04+C, —- C,=1T,
Substituting, the specific solution in this case is determined to be

— o —

15°C

-
—= Plane

* wall

40 Wiem?®
" x)
0
) L| x
(a)
49



(b) In this case different heat fluxes are specified at the two boundaries. The
application of the boundary conditions gives

dTy . q
—k?=f}n — —kCy =gy — C1=—f
and
dliL) L , qr
—"":—E='-’h. — kb =4, — {|=—If

Since gy # ¢; and the constant C; cannot be equal to two different things at
the same time, there is no solution in this case. This is not surprising since
this case corresponds to supplying heat to the plane wall from both sides and
expecting the temperature of the wall to remain steady (not to change with
time). This is impossible.

(c) In this case, the same values for heat flux are specified at the two boundar-
ies. The application of the boundary conditions gives

{}] ] 1 = 1 'E}
_k_i_ — "-?:] ; _k{__] — "'r'.ITU ; L] — _f
and
dT(L) , ] t};
—k——=¢y - —kCi=¢g, — C; = _I:

Thus, both conditions result in the same value for the constant C,, but no
value for C,. Substituting, the specific solution in this case is determined to be

T(x) = %.r - C,

which is not a unique solution since G, is arbitrary.

— Plane -
* wall -
40 Wiem® —7 [ ‘
] n_r'} F
— e 259 Wie
Bl L[ *
(b}
— Mane —
* wall *
40 Wiem?® — —
- n_r} "
cm? — L 40 Wiem?
[y .
X
— —

(c)




EXAMPLE 2-12 Heat Conduction in the Base Plate of an Iron

Consider the base plate of a 1200-W household iron that has a thickness of
L = 0.5 cm, base area of A = 300 cm?, and thermal conductivity of k =
15 W/m-K. The inner surface of the base plate is subjected to uniform heat flux
generated by the resistance heaters inside, and the outer surface loses heat to
the surroundings at T. = 20°C by convection, as shown in Fig. 2—-45. Taking the
convection heat transfer coefficient to be h = 80 W/m?-K and disregarding heat
loss by radiation, obtain an expression for the variation of temperature in the
base plate, and evaluate the temperatures at the inner and the outer surfaces.

Resistance heater
1200 W

Base plate

Insulation

300 em?

T,, = 20°C

h
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Analysis The inner surface of the base plate is subjected to uniform heat flux
at a rate of ‘
g, 1200W

Ao 0.03m2 0000 Wine

G =

The outer side of the plate is subjected to the convection condition. Taking the
direction normal to the surface of the wall as the x-direction with its origin on
the inner surface, the differential equation for this problem can be expressed
as (Fig. 2-46)

d*T
a "
with the boundary conditions
0
- k%= o = 40,000 W/m?
dl(L)
—k——=h[T(L)-T,
I [T(L) ]

The general solution of the differential equation is again obtained by two suc-
cessive integrations to be

dr
P
and
ﬂl) = C|.-T + ﬂg (a)

where C, and G, are arbitrary constants. Applying the first boundary condition,

-~ Resistance heater

1200 W

Insulation

Base plate

300 em?

T, =20°C

i byl




d1(0) S q
kTG =do — KCi=do > ==

- Noting that d77dx = C, and T(L) = C,L + C,, the application of the second
boundary condition gives

ok % = W) - T — —kC, =h{(C,L+Cp)—T.]

Substituting C;, = —¢gy/k and solving for C,, we obtain

_p 2B %
C=Tot+ 2+ 2L

Now substituting C, and G, into the general solution (a) gives

SR = [.~~.r I)
x) =T, q(,( : + A (b

-~ which is the solution for the variation of the temperature in the plate. The
temperatures at the inner and outer surfaces of the plate are determined by
substituting x = O and x = L, respectively, into the relation (b):

L |
ny) =7, + q(,(z t ;)

005
= 20°C + (40,000 Wlm’)( D005 m :

1S WmK = 80 Wm’K

) = §33°C
- and

( 40000 Wim*  ____

~ Resistance heater

~ Insulation

Base plate
Heat flux | Conduction \
Tm
: — k dT(0)
9o ax

Conduction | Conveclion

-ﬁ

40D Ty

]
0 I
FIGURE 2-46
The boundary conditions on the

base plate of the iron discussed
in Example 2-12.

1200 W Base plate

300 ¢cm?

T, =20°C |
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FIGURE 247
Schematic for Example 2—13.
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Pt EXAMPLE 2-13 Thermal Burn Prevention in Metal
Processing Plant

In metal processing plants, workers often operate near hot metal surfaces.
Exposed hot surfaces are hazards that can potentially cause thermal burns on
human skin tissue. Metallic surface with a temperature above 70°C is con-
sidered extremely hot. Damage to skin tissue can occur instantaneously upan
contact with metallic surface at that temperature. In a plant that processes
metal plates, a plate is conveyed through a series of fans to cool its surface
in an ambient temperature of 30°C, as shown in Figure 2-47. The plate is
25 mm thick and has a thermal conductivity of 13.5 W/m-K. Temperature at
the bottom surface of the plate is monitored by an infrared (IR) thermometer.
Obtain an expression for the variation of temperature in the metal plate. The
IR thermometer measures the bottom surface of the plate to be 60°C. Deter-
ming the minimum value of the convection heat transfer coefficient necessary
to keep the top surface below 47°C to avoid instantaneous thermal burn upan
accidental contact of hot metal surface with skin tissue.

SOLUTION In this example, the concepts of Prevention through Design (PtD)
are applied in conjunction with the solution of steady one-dimensional heat
conduction problem. The top surface of the plate is cooled by convection, and
temperature at the bottom surface is measured by an IR thermometer. The
variation of temperature in the metal plate and the convection heat transfer
coefficient necessary to keep the top surface below 47°C are to be determined.
Assumptions 1 Heat conduction is steady and one-dimensional. 2 Thermal
conductivity is constant. 3 There is no heat generation in the plate. 4 The bot-
tom surface at x = 0 is at constant temperature while the top surface at x = L
is subjected to convection.

Properties The thermal conductivity of the metal plate is given to be k =
13.5 Wim-K.

Analysis Taking the direction normal to the surface of the wall to be the x
direction with x = O at the lower surface, the mathematical formulation can
be expressed as

a:T -
de?
with boundary conditions
Hﬂ}l = TI:I
dT(L)

==y -1
o [ T(L) )

o4




Integrating the differential equation twice with respect to x yields

dr _
dx
Tx) = Cxx + C,

C

where C; and C, are arbitrary constants. Applying the first boundary condition
yields

noO=C,x0+GC,=T, - C,=T,
The application of the second boundary condition gives

dT(L)
~k—==hTL) - T.] - —kC, =hCL+C,~T)

Solving for C, yields
3 WT_ — C,) I_—1T1,

oo

: k+ hL  (kih) + L

Now substituting C, and C, into the general solution, the variation of tempera-
ture becomes

T, —T, .
(kih) + L

The minimum convection heat transfer coefficient necessary to maintain the
top surface below 4/7°C can be determined from the variation of temperature:

() — LT

T:x: - :r[]
L) =T, =

L )
(kih) + L 0

Solving for h gives

= 413 W/m*K

p kD= Ty (13.5 W/m-K )\ (47 — 60)°C

T LT_-T, 0.025m /(30 — 47)°C
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EXAMPLE 2-14 Heat Conduction in a Solar Heated Wall

Consider a large plane wall of thickness L = 0.06 m and thermal conductivity
k= 1.2 Wim-K in space. The wall is covered with white porcelain tiles that have
an emissivity of e = 0.85 and a solar absorptivity of @ = 0.26, as shown in
Fig. 2-48. The inner surface of the wall is maintained at 7, = 300 K at all times,
while the outer surface is exposed to solar radiation that is incident at a rate of
Guiar = BOO W/m?. The outer surface is also losing heat by radiation to deep space
at O K. Determine the temperature of the outer surface of the wall and the rate
of heat transfer through the wall when steady operating conditions are reached.
What would your response be if no solar radiation was incident on the surface?

e
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Analysis Taking the direction normal to the surface of the wall as the
x-direction with its origin on the inner surface, the differential equation for this
problem can be expressed as

d’T

Frie 0
with boundary conditions
nny =T, =300K
—k % = e0[T(LY* — Tpace] — ®Gtar

where T, = 0. The general solution of the differential equation is again
obtained by two successive integrations to be

ﬁ.r} — C|x -+ CI {.]

where C, and C, are arbitrary constants. Applying the first boundary condition
yields

M) =C, x0+C, — C=T,

Noting that dTldx = C, and TIL) = C,L + C, = C,L + T,, the application of
the second boundary conditions gives
L . :

—k % =eoll) —agyy — —kC,=ec(C,L+ T\ — aguy
Although C, is the only unknown in this equation, we cannot get an explicit
expression for it because the equation is nonlinear, and thus we cannot get a
closed-form expression for the temperature distribution. This should explain
why we do our best to avoid nonlinearities in the analysis, such as those as-
sociated with radiation.
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Let us back up a little and denote the outer surface temperature by 7(L) = T,
instead of T(L) = C,L + T,. The application of the second boundary condition
in this case gives

dI(L)

_kd‘r

=eaT(LY — @fgar — —kC; = 0T} — sopar

Solving for €, gives

- — 4
_ Ol o olar EG_TL

C, = b
1 i (b)
Now substituting C, and G, into the general solution (a), we obtain
Teotar — EO T}
Tx) = Dt golar — ET L..t’ ¥ T, ©

k

which is the solution for the variation of the temperature in the wall in terms of
the unknown outer surface temperature 7,. At x = L it becomes

: 4
e eo Ty

T, = —

L+T, (d)

Planc wall AP

Conduction

| |
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which is an implicit relation for the outer surface temperature T,. Substituting
the given values, we get

. 0.26 X (800 W/m?) — 0.85 X (5.67 X 10 * W/m>K*) T}
Iy = e (0.06 m) + 300 K

which simplifies to

T, =3104 -0 2409?5( a: )4
L= A1l - 100
This equation can be solved by one of the several nonlinear equation solvers

available (or by the old fashioned trial-and-error method) to give (Fig. 2-49)
T, =292.7K

Knowing the outer surface temperature and knowing that it must remain
constant under steady conditions, the temperature distribution in the wall can
be determined by substituting the T, value above into Eq. (c):

0.26 x (800 W/m?) — 0.85 x (5.67 x 10 % W/m*-K*)(292.7 KY* N

Ix) = 12 WimK

+ 300 K

which simplifies to
T(x) = (—121.5 K/m)x + 300 K

Note that the outer surface temperature turned out to be lower than the in-
ner surface temperature. Therefore, the heat transfer through the wall is to-
ward the outside despite the absorption of solar radiation by the outer surface.
Knowing both the inner and outer surface temperatures of the wall, the steady
rate of heat conduction through the wall can be determined from

= Te o wieg B0 = 227K
U Wm R e

g =k = 146 W/m?

_i'\# :;_

(1) Rearrange the equation to be solved:
R T\
T, = 310.4 - 0.240075 7k )
The equation is in the proper form since the
lell side consists of 77 only.

(2) Guess the value of Ty, say 300 K, and
substiiute inio the right side of the equation.
It pives

T =2902K
(3) Now substitute this value of Ty into the
right side of the equation and get

T =2931K
(4) Repeat step (3) until convergence to
destred acenracy s achieved. The
subsequent iteralions give

T, =2926K

T =2027K

I =2927K
Therelore, the solution is Ty = 292.7 K. The
result is independent of the initial guess,

|

FIGURE 249

A simple method of solving a
nonlinear equation is to arrange the
equation such that the unknown is
alone on the left side while everything
else is on the right side, and to iterate
after an initial guess until
convergence.




EXAMPLE 2-14 Heat Loss through a Steam Pipe

Consider a steam pipe of length L = 20 m, inner radius r, = 6 cm, outer radius
r, = 8 cm, and thermal conductivity k = 20 W/m-K, as shown in Fig. 2-49.
The inner and outer surfaces of the pipe are maintained at average tempera-
tures of T, = 150°C and T, = 60°C, respectively. Obtain a general relation for
the temperature distribution inside the pipe under steady conditions, and de-
termine the rate of heat loss from the steam through the pipe.

SOLUTION A steam pipe is subjected to specified temperatures on its sur-
faces. The variation of temperature and the rate of heat transfer are to be de-
termined.

Assumptions 1 Heat transfer is steady since there is no change with time.
2 Heat transfer is one-dimensional since there is thermal symmetry about the
centerline and no variation in the axial direction, and thus T = T{r). 3 Thermal
conductivity is constant. 4 There is no heat generation.

Properties The thermal conductivity is given to be k = 20 W/m-K.
Analysis The mathematical formulation of this problem can be expressed as

with boundary conditions
ﬂrj]' = T[ = 150°C
ﬂrj} = Tz = 60°C
Integrating the differential equation once with respect to r gives

dT
dr

where C, is an arbitrary constant. We now divide both sides of this equation by
r to bring it to a readily integrable form,

= C,

FIGURE 2-49

Schematic for Example 2—14.
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dr _ &1
dr F

Again integrating with respect to r gives (Fig. 2-50)
Tiry=C/lnr+ G, (a)

We now apply both boundary conditions by replacing all occurrences of r and
Tir) in Eq. (&) with the specified values at the boundaries. We get

Iy )=T, - C/lnrn+C,=T,
Tirp)=7T, —- Clnrn+C =T,

which are two equations in two unknowns, C; and C,. Solving them simultane-
ously gives

€= In(ry/r)) and G="1- In(ry/ry) In 7,

Substituting them into Eq. (a) and rearranging, the variation of temperature
within the pipe is determined to be

][1[ n'.-'lln' | |

) =—— (T, — T)) + T, (2-58)
In(r,/ry) = 2

The rate of heat loss from the steam is simply the total rate of heat conduction
through the pipe, and is determined from Fourier's law to be
dr C I —-T,

] . = — _— = = 2‘1 ;]:_QJ »=qT
O cytinder kA ar k(27rL) — wkLC, = 2wkL InGryr)

(2-59)

The numerical value of the rate of heat conduction through the pipe is deter-
mined by substituting the given values

) = 27(20 W/ K)(20 }M— 786 kW

Q = 2m(20 WimK)20m) 36 5870.06) — o0 K
Discussion Note that the total rate of heat transfer through a pipe is constant,

but the heat flux g = Q/(27rL) is not since it decreases in the direction of heat
transfer with increasing radius.

Dhifferential equation:

d a1
m(’ ?) i

fntegrate:
dT .
Fans
Divide by r (r=0)
dI” €,
ar - r

Integrate again:

TNn=CiInr+ G

which is the general solution.

FIGURE 2-50

Basic steps involved in the solution
of the steady one-dimensional

heat conduction equation in
cylindrical coordinates.
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EXAMPLE 2-16 Heat Conduction through a Spherical Shell

Consider a spherical container of inner radius r, = B cm, outer radius r, =

- 10 cm, and thermal conductivity k = 45 W/m-K, as shown in Fig. 2-52. The

inner and outer surfaces of the container are maintained at constant tempera-

tures of 1, = 200°C and [, = BO"C, respectively, as a result of some chemical

reactions occurring inside. Obtain a general relation for the temperature distri-

bution inside the shell under steady conditions, and determine the rate of heat
loss from the container.
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Analysis The mathematical formulation of this problem can be expressed as
d( ,dlI )
= — | =0
dr (r dr

Tir,) = T, = 200°C
Hry) =1, =80°C
Integrating the differential equation once with respect to ryields

dl
FE E = C1
where C, is an arbitrary constant. We now divide both sides of this equation by
r? to bring it to a readily integrable form,
di" G,
dr P

Again integrating with respect to r gives

with boundary conditions

- G
Ir) = - + €, (a)

We now apply both boundary conditions by replacing all occurrences of r and
T in the relation above by the specified values at the boundaries. We get

G
Hrl:l=:'"l — __+C2=Tl

Fi

C
Ty =T, - ——+G=T,
Fa
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- which are two equations in two unknowns, C, and C,. Solving them simultane- j

' ously gives

rr rsls — 0,

(0 -1) ad =
1

rz-

C|=-

h=5

. Substituting into Eq. (a), the variation of temperature within the spherical
- shell is determined to be

N 'k I]'“ - f'r.ll"l
2 (T, -T) + ——— (2-60)
nry — ry) ry =y

Ir) =

* The rate of heat loss from the container is simply the total rate of heat conduc-
. tion through the container wall and is determined from Fourier's law

dT C T
Qiphﬂm - _M d_ = _k(4ﬂ'f2) _11 - _'1"17’-'(-1] - hh]rl : : III—E”
r r

fla =

- The numerical value of the rate of heat conduction through the wall is deter-
mined by substituting the given values to be

(200 — 80)*C

= 5 K0, _ =27.1 kW
0 = 47 (45 Wim-K)(0.08 m)}0.10 m) 010 =008 m 27.1k

Discussion Note that the total rate of heat transfer through a spherical shell is
- constant, but the heat flux ¢ = Q/4=r? is not since it decreases in the direc-
tion of heat transfer with increasing radius as shown in Fig. 2-53.

42 <4
qy = %‘ = 4_,%'%, =337 kW/m’
g = % = 4—;2(1“'—':5,3\’".‘-), =216 kW/m®
FIGURE 2-53

During steady one-dimensional
heat conduction in a spherical (or
cylindrical) container, the total rate
of heat transfer remains constant,
but the heat flux decreases with
increasing radius.
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HEAT GENERATION IN A SOLID

Many practical heat transfer applications Chemical
involve the conversion of some form of energy reactions

into thermal energy in the medium. -
Such mediums are said to involve internal heat
generation, which manifests itself as a rise in Nuclear
temperature throughout the medium. el rods
e

Some examples of heat generation are
- resistance heating in wires,
- exothermic chemical reactions in a solid, and

Electric
resistance
wires

- nuclear reactions in nuclear fuel rods

where electrical, chemical, and nuclear
energies are converted to heat, respectively. FIGURE 2-53
Heat generation in solids is

Heat generation in an electrical wire of outer . ,
commonly encountered in practice.

radius r, and length L can be expressed as

. Egcn. electric I- R{. R
€gen — |/ - 5 (W/m?)
wire wr, L
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The quantities of major interest in a medium with h.T.
heat generation are the surface temperature T, J
and the maximum temperature T, that occurs
in the medium in steady operation.

Heat generation

| Rateof | | Rate of

[ heat transfer ) = [mwrg_r generation
TO 2 solid . withi > solid | FE
from the solid,  within the solid | By = épnM

O = 6,V (W) Q=hA(T,—T,) (W)
FIGURE 2-54
eV At steady conditions, the entire heat
oen . .
T.=T, + ,F A generated 1n a solid must leave the
s solid through its outer surface.
For a large plane wall of thickness 2L (A, = 24, and V = 2L A, ) with both
sides of the wall maintained at the same temperature 7, a long solid cvlinder
of radius r, (A, = 27rr,L and V = 7712 L), and a solid sphere of radius r, (A, =
dar2 and V = %mj} Eq. 2-66 reduces to
{:’ytn‘!— Coen’o f-'xr,mr,,
T‘-.["Jilm‘ wall — T'L + h T"""?"lmd{'l' - Tx + "J'h T&.'ﬁp]lc['l} - Tx + --{h
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FIGURE 2-55

Heat conducted through a cylindrical
shell of radius r is equal to the heat
generated within a shell.

Fourier’s Law of heat conduction atr=r:

]
Coen

rdr

_‘E"-"J‘r £ = ‘:;uen Ur'
dr £
where
A, =2mrL V= 7L
Substituting,
—k(27rL) % = bye(mr?l) — dT =
) $

2k

Integrating from r = 0 where 7(0) = T, to r = r, where T(r,) = T, yields

‘{JI'__‘L‘r'J'r-"_
A}"-Jnu.%;.~.'_‘~;I1r'u_I-:*J' - Ttl o Ta - Ak
.
. ":J;__'cn'rr-_
iTrrm.‘-;. sphere - 6k
.
€ genl”
AT, = 67

max, plane wall "1!.
N




Maximum temperature:

|
|
|
|
| TD = Tmax
1 |
)
‘ﬁTmaxI {Z ) _L—

A |

T.. S I LY T, max, plane wall _‘1.!;1‘
|

Heat generation

|
|
|
|
|
|

b Symmetry _ _ /

line T~.'-;'u1-:1' I T T A;rn'm.'\'

FIGURE 2-56

The maximum temperature in
a symmetrical solid with uniform

heat generation occurs at its center.
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EXAMPLE 2-17  Centerline Temperature of a Resistance Heater

A 2-kW resistance heater wire whose thermal conductivity is k = 15 W/m-K
has a diameter of D = 4 mm and a length of L = 0.5 m, and is used to boil
water (Fig. 2-58). If the outer surface temperature of the resistance wire is
T, = 105°C, determine the temperature at the center of the wire.

SOLUTION The center temperature of a resistance heater submerged in water
is to be determined.

Assumptions 1 Heat transfer is steady since there is no change with time.
2 Heat transfer is one-dimensional since there is thermal symmetry about the
centerline and no change in the axial direction. 3 Thermal conductivity is con-
stant. 4 Heat generation in the heater is uniform.

Properties The thermal conductivity is given to be k = 15 W/m-K.

Analysis The 2-kW resistance heater converts electric energy into heat at a
rate of 2 kW. The heat generation per unit volume of the wire is

Egr  Ep 2000 W
- = = = (318 X 10° W/’
Ve m2L  m(0.002mP05 m) .

EI‘lli.‘l'l

Then the center temperature of the wire is determined from Eq. 2-71 to be

€0l 0318 X 10° W/m*)(0.002 m)?
gen'o _ 105°C + ( T "‘::J: }(AC} m) — 126°C
m-"

T,=T,+

Discussion  Note that the temperature difference between the center and the
surface of the wire is 21°C. Also, the thermal conductivity units W/m-°C and
W/m-K are equivalent.
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EXAMPLE 2-18 Variation of Temperature in a Resistance Heater

A long homogeneous resistance wire of radius r, = 0.5 cm and thermal conduc-
tivity k= 13.5 W/m-"C is being used to boil water at atmospheric pressure by the
passage of electric current, as shown in Fig. 2-59. Heat is generated in the wire
uniformly as a result of resistance heating at a rate of &, = 4.3 x 10" W/m?. If
the outer surface temperature of the wire is measured to be 7, = 108°C, obtain
a relation for the temperature distribution, and determine the temperature at the
centerline of the wire when steady operating conditions are reached.

Waler 108°C
.r"f
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Analysis The differential equation which governs the variation of temperature
in the wire is simply Eq. 2-27,

1 d ( dr) Egm

——lr—]4+—=0

rdr dr k
This is a second-order linear ordinary differential equation, and thus its gen-
eral solution contains two arbitrary constants. The determination of these con-
stants requires the specification of two boundary conditions, which can be
taken to be

T(r,) = T, = 108°C

and

dr)
dr

The first boundary condition simply states that the temperature of the outer
surface of the wire is 108°C. The second boundary condition is the symmetry
condition at the centerline, and states that the maximum temperature in the
wire occurs at the centerline, and thus the slope of the temperature at r=0
must be zero (Fig. 2-60). This completes the mathematical formulation of the
problem.

Although not immediately obvious, the differential equation is in a form that
can be solved by direct integration. Multiplying both sides of the equation by
r and rearranging, we obtain

4 () e,
dr dr k

Integrating with respect to r gives

0

dl Cpa r?
r3=—%%+£I (a)

since the heat generation is constant, and the integral of a derivative of a func-
tion is the function itself. That is, integration removes a derivative. It is conve-

| dT(0) _

| |~
dr

N fo F
|
éﬂ'm
FIGURE 2-60

The thermal symmetry condition
at the centerline of a wire in which
heat is generated uniformly.
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tion is the function itself. That is, integration removes a derivative. It is conve-
nient at this point to apply the second boundary condition, since it is related
to the first derivative of the temperature, by replacing all occurrences of r and
dTidrin Eq. (a) by zero. It yields

dT(0) €y , ,
0x—- =—§k x0+C, — €, =0

Thus C; cancels from the solution. We now divide Eq. (a) by rto bring it to a
readily integrable form,

dl e
dr 2k
Again integrating with respect to r gives

e
g

==

ri+ C, (b)

We now apply the first boundary condition by replacing all occurrences of r by
iy and all occurrences of T by 7. We get
e e

Zen gen

240, = C=T,+—¢

T ax o

Substituting this C; relation into Eq. (b) and rearranging give

T =T, + 2=
4k
which is the desired solution for the temperature distribution in the wire as a
function of r. The temperature at the centerline (r = 0) is obtained by replac-

ing rin Eq. (c) by zero and substituting the known quantities,

(r= — r-) (c)

€ge 43 ¥ 10'W/m®
TO) = T, + — 12 = 108°C + T (0.005 m)* = 128°C
T 4 X (13.5 W/m-"C)

Discussion The temperature of the centerline is 20°C above the temperature
of the outer surface of the wire. Note that the expression above for the center-
line temperature is identical to Eg. 271, which was obtained using an energy
balance on a control volume.
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EXAMPLE 2-19 Heat Conduction in a Two-Layer Medium

Consider a long resistance wire of radius r; = 0.2 c¢cm and thermal conductivity
K = 15 Wim-K in which heat is generated uniformly as a result of resistance
heating at a constant rate of €, = 50 W/cm? (Fig. 2-61). The wire is embed-
ded in a 0.5-cm-thick layer of ceramic whose thermal conductivity is K...umic =
1.2 Wim-K. If the outer surface temperature of the ceramic layer is measured to
be I, = 45°C, determine the temperatures at the center of the resistance wire
and the interface of the wire and the ceramic layer under steady conditions.

Interface
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- Analysis Letting T, denote the unknown interface temperature, the heat trans-
fer problem in the wire can be formulated as

dT,. € pen
Id(r m)+m=ﬂ'

rdr dr k
with
Tyir) = T,
dTi0)
dr
This problem was solved in Example 2-18, and its solution was determined
to be
Tirer) = T; + i 3 —rd (a)
wire I 4kwim 1

Noting that the ceramic layer does not involve any heat generation and its
outer surface temperature is specified, the heat conduction problem in that
layer can be expressed as

? ¢ ORI Interface
£ <r‘ ‘“"“") =0
dr dr

with

chmnc (I‘,) - TI
Toccumc (1) = T, = 45°C

Ceramic layer

This problem was solved in Example 2-16, and its solution was determined
to be

In(r/r,)

= ™ T s - - 74
= ,/r,)(" AP (b

7ccmn|c (I‘)




We have already utilized the first interface condition by setting the wire and
ceramic layer temperatures equal to T, at the interface r = r,. The interface
temperature T, is determined from the second interface condition that the heat
flux in the wire and the ceramic layer at r = r;, must be the same:

— ki ""[TWin-. '|:"'.I;J "'!T-::-.munm: {FIJ éﬂ-¢ﬂr1 — % T, — T.r ( 1 )

dr e T T Ty ek )\

Solving for T, and substituting the given values, the interface temperature is
determined to be
€pen’t ry

% In—+T,

"GRG Fy

TJ =

(50 X 105 W/m®*)}0.002 m)® 0,007 m
- 2(1.2 Wim-K) " 0.002m

+ 45°C = 149.4°C

Knowing the interface temperature, the temperature at the centerline (r = Q)
is obtained by substituting the known quantities into Eq. (a),
i

é (50 % 106 W/m?)(0.002 m)>
BT _ ] =
4k A 4 x (15 W/m-K)

Ware

T (0) = T, + 152.7°C

Thus the temperature of the centerline is slightly above the interface
temperature.
Discussion This example demonstrates how steady one-dimensional heat
conduction problems in composite media can be solved. We could also solve
this problem by determining the heat flux at the interface by dividing the total
heat generated in the wire by the surface area of the wire, and then using this
value as the specified heat flux boundary condition for both the wire and the
ceramic layer. This way the two problems are decoupled and can be solved
separately.

Interface

Ceramic layer
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EXAMPLE 2-20 Heat Conduction in a Plane Wall with Heat
Generation

A large plane wall of thickness 21 experiences a uniform heat generation
(Fig. 2-62). Determine the expression for the variation of temperature within
thewall,if(a) T, = L,and (b) T; = T..
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For steady one-dimensional heat conduction and constant thermal conductiv-
ity, the general heat conduction equation is simplified to

d’T

e T 0

Integrating twice gives the general solution to this second order differential
equation as

g
Tx) = B + Cx + G

2k |
[
(a) For the case of asymmetrical boundary conditions with T, = T,, applying :
the boundary conditions gives |
- | -
e} I
x=-L T-L=T-= “ B2 oL+ G, Ty Pl F
willl
, S I |
= i IIL]=II=—EL+LL+{I |
Note that in this problem the coordinate system is placed at the middle of the |
plane wall (x = 0} and x to the right of the centerline is considered positive and '
to the left negative. In analyzing plane wall problems with heat generation, this —L +L
notation is usually adopted in order to better capture the effect of heat genera-
tion on the temperature profile. Solving for the constants C, and G, yields X
. LT . g T, + T,
¢, = o0 and C, = % —I? + T

Substituting C, and C, expressions into the general solution, the variation of
temperature within the wall is determined to be

. ‘;-;t'ﬂ'” x* ,—T /x I + T, 77
Ix) = Y (I I_-) i (—] | (a)




(b) For the case of symmetrical boundary conditions, substituting 7, = T;. into
the above equation gives

¢ I?

(1- =)+ T (b)

Tx) —

2k
Discussion Equation (a) shows that the variation of temperature within the
wall for the case of asymmetrical boundary conditions with T; = T, is not sym-
metric and the maximum temperature occurs to the left of the centerline. Note
that Eq. (a) reduces to the temperature solution of Example 2-10 (Eqg. 2-56)
for heat conduction in a plane wall with no heat generation by setting é,,, = 0
and making the appropriate coordinate transformation. In the case of symmet-
rical boundary conditions (T; = T3), Eq. (b) shows that the variation of tem-
perature within the wall is symmetric and the maximum temperature occurs at
the centerline. This is comparable to the results shown in Example 2-17 for
temperature variation in a cylindrical resistance heater.

Plane
wall
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VARIABLE THERMAL CONDUCTIVITY, k(T)

500 —
400 | ——————==o=_ Silver
300 —— = ——--ﬂ___‘;'“ Copper
o T— T = Gold
200 T Aluminum

100 \mgﬂe}]ﬁ_ __-_-ﬂ:::*-___

= e i e

£ Platinum

= 50

g Iron :

E f_,.,f

= 20 5 Stainless steel,

g | AIST 304

g 10 - Aluminum

Z oxide

= #"._.//

5 /
H‘“‘m,___ f.-'
Pyroceram ———— .
2 /
Iff"'ﬂFused quartz
l ~
100 300 500 1000 2000 4000
Temperature (K)
FIGURE 2-62

Variation of the thermal conductivity
of some solids with temperature.

When the variation of thermal conductivity with
temperature in a specified temperature interval is
large, it may be necessary to account for this
variation to minimize the error.

When the variation of thermal conductivity with
temperature k(T) is known, the average value of
the thermal conductivity in the temperature range
between T, and T, can be determined from

(T
‘ k(T)dT
T
k. y — —
o I, — T
- TI o T_“- A |ﬂ h Jp—
(...) ["]:Lr]-: wall = fj:‘:l‘-.'!__f J" T — z h_|-'|r-: fil". TJ'{J(T
. ) TJ T T_“- :F | Ty
(.,}L'_‘~I1|1~LI-;-J' - :F’ﬂ‘ Ve L . f\.{ T”IT

avg I”". f'_w’:ﬁ ] I|H |"-_‘.\-"If"l-] ) ;‘TJ

T —T, dmaryr, (T
= — k(TdT

R N N Sl ‘I




The variation in thermal conductivity of a material with

temperature in the temperature range of interest can often be

approximated as a linear function and expressed as

kK(T) = ko(1 + BT)

1

S temperature coefficient Plane wall
of thermal conductivity. K(T) = ky(1 + BT)
The average value of thermal conductivity B>0
In the temperature range T, to T, in this . B=0
case can be determined from !
rr. Ty
ko(1 + BTdT p<o0
" s LT 04 >
Kavg = T, — T, N k“\_ L+ P TJ = k(Tg) L x
FIGURE 2-63

The average thermal conductivity in this
case is equal to the thermal conductivity
value at the average temperature.

The variation of temperature in a plane
wall during steady one-dimensional

heat conduction for the cases
of constant and varable
thermal conductivity.




_ , : 7 kT)=ky(1+BT)
EXAMPLE 2-21 Variation of Temperature in a Wall with k(T) v

Consider a plane wall of thickness L whose thermal conductivity varies linearly ﬂi‘l‘f

in a specified temperature range as k(7) = ky(1 + BT) where ky and 8 are con-

stants. The wall surface at x = O is maintained at a constant temperature of T;

while the surface at x = L is maintained at T,, as shown in Fig. 2-65. Assuming If’* *“\,.
steady one-dimensional heat transfer, obtain a relation for (a) the heat transfer T, T,

rate through the wall and (b) the temperature distribution 7(x) in the wall.

SOLUTION A plate with variable conductivity is subjected to specified tem-
peratures on both sides. The variation of temperature and the rate of heat
transfer are to be determined.

Assumptions 1 Heat transfer is given to be steady and one-dimensional. FIGURE 2-65
2 Thermal conductivity varies linearly. 3 There is no heat generation.
Properties The thermal conductivity is given to be k(T) = ky(1 + B8T).
Analysis (a) The rate of heat transfer through the wall can be determined from

Schematic for Example 2-21.

., LT
Q_:wg L

where A is the heat conduction area of the wall and

T, + T,)

rl-c:n-'g = R{Tm'g} = kﬂ(] + B
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is the average thermal conductivity (Eq. 2-80).



(b) To determine the temperature distribution in the wall, we begin with Fourier's
law of heat conduction, expressed as

) drT
Q=—k(1HA—
dx

where the rate of conduction heat transfer Q@ and the area A are constant.
Separating variables and integrating from x = O where T(0) = T, to any x
where T(x) = T, we get
X T
Qdx = —A | K(TdT

.l_’] ‘Tl

Substituting k(T) = k(1 + BT) and performing the integrations we obtain

Ox = —Ak[(T — T)) + B(T? — T?)/2]
Substituting the O expression from part (a) and rearranging give
2 2K,y 2
T2+ =T+ ) —T:——=—T,=0

& Bﬁf 3 B

which is a quadratic equation in the unknown temperature 7. Using the qua-
dratic formula, the temperature distribution T(x) in the wall is determined to be

. | [ 2Kavg X ;g ——
u'r——— (T — THy+ T2+ =

N Bk L' 7 B!

Discussion The proper sign of the square root term (+ or —) is determined
from the requirement that the temperature at any point within the medium
must remain between T; and T,. This result explains why the temperature
distribution in a plane wall is no longer a straight line when the thermal con- ;5

ductivity varies with temperature.




EXAMPLE 2-22 Heat Conduction through a Wall with k(T) f/Mir"1=#:.3,[| +BT)

¥
Consider a 2-m-high and 0.7-m-wide bronze plate whose thickness is 0.1 m. Bronze
One side of the plate is maintained at a constant temperature of 600 K while plate
the other side is maintained at 400 K, as shown in Fig. 2-66. The thermal
conductivity of the bronze plate can be assumed to vary linearly in that tem- I("* *\.I
perature range as k() = k(1 + BT) where ky = 38 Wim-Kand g = 9.21 X 1, _¢0K T, =400 K

10~* K-1. Disregarding the edge effects and assuming steady one-dimensional )

heat transfer, determine the rate of heat conduction through the plate. E— O
SOLUTION A plate with variable conductivity is subjected to specified tem-
peratures on both sides. The rate of heat transfer is to be determined.

Assumptions 1 Heat transfer is given to be steady and one-dimensional.
2 Thermal conductivity varies linearly. 3 There is no heat generation.

. e FIGURE 2-66
Properties The thermal conductivity is given to be k(T) = k(1 + 8T). Schematic for Example 722
Analysis The average thermal conductivity of the medium in this case is P ’
simply the value at the average temperature and is determined from

T, + T,
k:ﬁ'g = k(Tm'g} = kll] 1+ ﬁ_T

-« [ —>»

(600 + 400) K
= 38W/mK)| 1+ (9.21 x 10*K™ 1) 5
= 55.5 W/m-K
0—k A"l
= Paye L
600 — 400)K
= (555 W/m-K)(2 m x 0.7 m) ( ) = 155 kW

0.1 m
Discussion  We would have obtained the same result by substituting the given
k(T) relation into the second part of Eq. 2-/76 and performing the indicated
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integration.
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