Chapter 2: Heat Conduction
Equation

Objectives

When you finish studying this chapter, you should be able to:

Understand multidimensionality and time dependence of heat transfer,
and the conditions under which a heat transfer problem can be
approximated as being one-dimensional,

Obtain the differential equation of heat conduction in various
coordinate systems, and simplify it for steady one-dimensional case,

Identify the thermal conditions on surfaces, and express them
mathematically as boundary and initial conditions,

Solve one-dimensional heat conduction problems and obtain the
temperature distributions within a medium and the heat flux,

Analyze one-dimensional heat conduction in solids that involve heat
generation, and

Evaluate heat conduction in solids with temperature-dependent
thermal conductivity.




Introduction

» Although heat transfer and temperature are
closely related, they are of a different nature.

» Temperature has only magnitude
| > itisascalar quantity.

 Heat transfer has direction as well as magnitude
| > itisavector quantity.

 We work with a coordinate system and indicate
direction with plus or minus signs.

Introduction — Continue

» The driving force for any form of heat transfer is the
temperature difference.

* The larger the temperature difference, the larger the
rate of heat transfer.

» Three prime coordinate systems:
— rectangular (T(x, y, z, t)),
— cylindrical (T(r, ¢, z, t)), !
— spherical (T(r, ¢, 0, t)). 1




Introduction — Continue

Classification of conduction heat transfer problems:
 steady versus transient heat transfer,
 multidimensional heat transfer,

* heat generation.

Steady versus Transient Heat Transfer

« Steady implies no change with time at any point

within the medium ..

0,=0,

 Transient implies variation with time or time
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Multidimensional Heat Transfer

» Heat transfer problems are also classified as being:
— one-dimensional,
— two dimensional,
— three-dimensional.

 In the most general case, heat transfer through a
medium is three-dimensional. However, some
problems can be classified as two- or one-dimensional
depending on the relative magnitudes of heat transfer
rates in different directions and the level of accuracy
desired.

 The rate of heat conduction through a medium in
a specified direction (say, in the X-direction) is
expressed by Fourier’s law of heat conduction
for one-dimensional heat conduction as:
: dT
Qcond = _kA& (W) (2'1) 7 """’“g‘”

\\ -
~T(x)

 Heat is conducted in the direction

Q>0

of decreasing temperature, and thus

Heat flow

the temperature gradient is negative

when heat 1s conducted in the positive x-
direction.




General Relation for Fourier’s Law of

Heat Conduction

« The heat flux vector at a point P on the surface of
the figure must be perpendicular to the surface,
and i1t must point in the direction of decreasing
temperature ‘1

e If n 1s the normal of the
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isothermal surface at point P,
the rate of heat conduction at

-u...___“
-~

that point can be expressed by

— An isotherm

Fourier’s law as

- dT
Qn = —kAd—n (W) (2'2)

General Relation for Fourier’s Law of
Heat Conduction-Continue

* In rectangular coordinates, the heat conduction
vector can be expressed in terms of its components as

Q,=Qi+Q,j+Qk @3

* which can be determined from Fourier’s law as
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Heat Generation

« Examples:
— electrical energy being converted to heat at a rate of I°R,
— fuel elements of nuclear reactors,

— exothermic chemical reactions.
» Heat generation is a volumetric phenomenon.
 The rate of heat generation units : W/m” or Btu/h - {t°.

» The rate of heat generation in a medium may vary
with time as well as position within the medium.

» The total rate of heat generation in a medium of
volume V can be determined from

Egn = [6ndV (W) (29)
\Y

One-Dimensional Heat Conduction
Equation - Plane Wall

Rate of heat Rate of heat Rate of heat Rate of change of
conductlon conductlon + generatlon inside the energy content

at x at X+A4x the element of the element
l" \
Eon IVolume
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element
'Q Qx+AX| gen,element J|_: : (2'6)
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* The change 1 m thé energy Content and the rate of heat
generation ca\n be expressed as

-—— - .l__L ____________________________

IAEelemegm +3.t E = mC(Tt+At ) .pCAAX( t+At t)(2 /)

EX==N =1 | _________________________
| - b . |
Egen element ' eger‘|VeIement :' e AAX (2'8)

. Substltutmg 1ntaEq 2 ,61we get,’ HEN

' Q Qx+Ax‘ﬂ_egenAAX ‘_I',OCAAX THAt Tt | (2'9)

At
* Dividing by AAX, Iaklng the’ hmlt as Ax> 0 ,and At 0,
and from Fourier’s law: I
1 0 oT oT
— KA |46 = pc— 2-11
Aax(kAax)+ege” o5 (2-11)

The area A is constant for a plane wall = the one dimensional
transient heat conduction equation in a plane wall is

Variable conductivity: ﬁ(k gj+e‘ _ (2-13)
ox\ ox oen ot
. 2 e
Constant conductivity: o1 +-20 = Lot , a _ K (2-14)

x> ko« ot oC
The one-dimensional conduction equation may be reduces
to the following forms under special conditions
r :
d°T € _ o (2-15)

1) Steady-state: ek
o°T 10T
< ' - _L9 s
2) Transient, no heat generation: 2 g o \216)

2
__ 3) Steady-state, no heat generation: (;XI =0 (2-17)




One-Dimensional Heat Conduction
Equation - Long Cylinder

Rate of heat Rate of heat Rate of heat Rate of change of
conduction conductlon + generatlon inside | = | the energy content

of the element

at r+A4r the element

e

— eIement
Q Qr+Ar + Egen element At

atr

1
I
IQ Qr+Ar| l gen,element J|_: cene : (2'18)

* The change 1 m thé eNergy content and the rate of heat
generation ca\n be expressed as

-—— .l__L_‘ ________________ Pr == = = = —— = = -

IA_%el_en_wth:_ +3‘t Et r'T:](_'I (_-I:p,_At_ _ Tt) ::LPCAAF (Tt N t) (2-19)
I?gefl:le@egt = eger‘ivelement :'? e A_A_r_ I i (2 20)

. Substltutmg 1ntaEq 2 ,LB, we get v

| Q QrJrAr‘ﬁ_eQJenAAr ‘_:,OCAAF THAt Tt \ (2-21)

At )
» Dividing by Adr, Iaklng the hmlt as Ar-> 0 ;[nd At 0,
and from Fourier’s law: et

1 0 oT . oT
ZE(MEJ + egen = pC—— (2'23)




Noting that the area varies with the independent variable r
according to A=2zrL, the one dimensional transient heat
conduction equation in a plane wall becomes

Variable conductivity: li(rk a_T] el (2-25)
rorl or) ™ ot

Constant conductivity: lg(r o j+ Soen _ 1 O (2-26)
ror\ or k oot

The one-dimensional conduction equation may be reduces
to the following forms under special conditions

/ .
li(rdeﬁgken _o (2-27)

1) Steady-state: rdr\ dr

2 | o 1a(.eT) 1T
2) Transient, no heat generation: a7\ ar | o ot (2-28)

d( dT
_3) Steady-state, no heat generation: E(rﬁj =0 (2-29)

One-Dimensional Heat Conduction
Equation - Sphere
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General Heat Conduction Equation

Rate of heat  Rate of heat Rate of heat  Rate of change

conduction - conduction 4 generation — of the energy
atx,y,andz at x+A4x, y+A4y, inside the content of the
l and z+4z element element

\ \
/Q +Q +Q \ 6X+AX y+Ay z+Az gen element — eAIetment (2 36)

Repeating the mathematical approach used for the one-
dimensional heat conduction the three-dimensional heat
conduction equation is determined to be

Two-dimensional

o 2 2 2 :
Constant conductivity: OT 0T 0T S 107 (2-39)
ox> oy’ 622/ k oot

Y

Three-dimensional

\

4 2 2 2
0T aT 0T egen_ 9-40
1) Steady-state: o o T Tk =0(2-40)
h o°T N o°T 82T _lar (2-41)
2) Transient, no heat generation: PYe ay2 7 o ot

T T aT_O (2-42)

(_3) Steady-state, no heat generation: >t & o




Cylindrical Coordinates
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Spherical Coordinates
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Boundary and Initial Conditions

Specified Temperature Boundary Condition

Specified Heat Flux Boundary Condition

Convection Boundary Condition

Radiation Boundary Condition

Interface Boundary Conditions

Generalized Boundary Conditions

Specified Temperature Boundary
Condition

For one-dimensional heat transfer
through a plane wall of thickness ™

: 150°C T(x, 1) 70°C
L, for example, the specified
temperature boundary conditions 0 :
can be expressed as ‘

1(0, 1) = 150°C

T, =T, (2-46) T(L, 1) = 710°C

TL, =T,

The specified temperatures can be constant, which 1s the
case for steady heat conduction, or may vary with time.




Specified Heat Flux Boundary

Condition
The heat flux in the positive X- el
direction anywhere in the medium, =
. . . gy =—k=—=—
including the boundaries, can be . o Heat
expressed by Fourier’s law of heat C““"““““l“ ”“‘I'
conduction as L) _
dT Heat flux in the ) B
g=-k—-= positive x- ) L %
dx direction &) [

The sign of the specified heat flux is determined by
inspection: positive if the heat flux is in the positive
direction of the coordinate axis, and negative if it is in
the opposite direction.

k

Two Special Cases

Insulated boundary Thermal symmetry
|, Center plane
— Zero |
Insulation T(x. 1) 60°C stope | Temperature
m distriousion.
0 : ' o et
| I"" i ! plan
e, e
T(L. 1) = 60°C ;
LD _
el
T (0,1 T (0,1 aT(yt)
00 o o TOH_g )

(2-49) (2-50)




Convection Boundary Condition

Heat conduction

at the surface in a

selected direction

Heat convection | /nlTe=—T0.Bl==k=50

Convection | Conduction I
' ‘ l 1,
Tos

_dT(0. 1)

— at the su n_‘ace ?n h Conduction [ Convection
the same direction T i
_k% = [ T(L, 1)~ T,,]
0 4o
oT(0,t) . .
k=L =h [T, -TO,1)] (2-51a)
OX ]

and

L ATLY n

OX

T(LH)-T,,] (2-51b)

. 0 (T4, - O =~k R
Heat conduction Radiation exchange e, i
at the surfaceina | — at the surface in A Toum,2
selected direction

and

Radiation Boundary Condition

K oT (0,1) .
OX

LT

the same direction

Radiation | Conduction

. pmnlys

Conduction | Radiation

T(L, e
—k 9 i]r ] =&,0[TL, nt-T3 1

o}
T L X

10 [Tsirr,l —T(0, t)4 } (2-52a)

=g,0| T(L) T, ,| (2520)




Interface Boundary Conditions

At the interface the requirements are:

(1) two bodies in contact must have the same
temperature at the area of contact,

(2) an interface (which is a 1[:1;.:[:.“:
surface) cannot store any Mt Nas
energy, and thus the heat flux
on the two sides of an
interface must be the same.

?:,'{.\'U. = TB("“U‘ I)

TA(XO7 t) = TB(X09 t) (2-53) Conduction | Conduction
al’l(aiT t - , o EJ]:‘(,;-U. 7) Lg EJTB(.rO. f)
—k, A(%51) =k, 8" (X09 ) (2 54) . A ox l B ox
OX I“'t)

Generalized Boundary Conditions

In general a surface may involve convection, radiation,
and specified heat flux simultancously. The boundary
condition 1n such cases is again obtained from a surface
energy balance, expressed as

Heat transfer Heat transfer
to the surface — from the surface
in all modes In all modes

Heat Generation in Solids

The quantities of major interest in a medium with heat
generation are the surface temperature T, and the
maximum temperature T . that occurs in the medium
in steady operation.




Heat Generation in Solids -The Surface
Temperature

Rate of Rate of
heat transfer | == | energy generation (2-63)
from the solid within the solid

For uniform heat generation within the medium

l Q= e.genV (W) (2-64)

The heat transfer rate by convection can also be
expressed from Newton’s law of cooling as

-|le——Q=hA(T,-T,) W) (2-65)

‘ €,enV
> T =T +— (2-66)
hA,

Heat Generation in Solids -The Surface

Temperature

For a large plane wall of thickness 2L (A;=2A, ., and

V=2 LAwall)
e L

T =T+ (2-67)

s, plane wall

For a long solid cylinder of radius r, (A;=2xr,L and
V=t e2L) 6
T =T_+

s,cylinder

gen r-0 (2-68)
2h

For a solid sphere of radius ry (A;=471,> and V=4/,71°)

e.gen IFO

T =T _+ (2-69)

s,sphere o0




Heat Generation 1in Solids -The maximum
Temperature 1in a Cylinder (the Centerline)

The heat generated within an inner
cylinder must be equal to the heat
conducted through its outer surface.

dT |
_kAr E = egenVr (2'70)

Substituting these expressions into the above equation
and separating the variables, we get

—k(27er)d—T= é (ﬂrzL) 5 dT = Jon gy
2k

dr

gen
Integrating from r =0 where T(0) =T, to r=r,

e.gen r02
ATmax,cylinder = TO _Ts = T (2-71)

Variable Thermal Conductivity, k(T)

o e 500
 The thermal conductivity of a o0 RS siher
material, in general, varies with 200 e e,y ||
temperature. oo | L]
* An average value for the 2 i S
o« . . Py Iron
thermal conductivity is \\ Nt
commonly used when the g w K les sl
variation 1s mild. 2 10 Auminn
. . . F.- ) oxide =
 This is also common practice o 7
for other temperature- T T
dependent properties such as 1 AT [used guan
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the density and specific heat.

Temperature (K)




Variable Thermal Conductivity for
One-Dimensional Cases

When the variation of thermal conductivity with

temperature K(T) is known, the average value of the thermal

conductivity in the temperature range between T, and T,
can be determined from -
J; kT (2-75)

ave -I-2 _-I-1
The variation 1n thermal conductivity of a material
with can often be approximated as a linear function

and expressed as
k(T)=k, A+ 4T) &P
[ the

Variable Thermal Conductivity

* For a plane wall the T“
temperature varies
during steady one- et
dimensional heat conduction KT) = k(1 +BT)
when the >0
1S : [ B=0

T, /
 This is no longer the case %
T,

when the thermal conductivity
changes with temperature

(even linearly). L

=V




