
Chapter 2: Heat Conduction 
Equation

Objectives
When you finish studying this chapter, you should be able to:
• Understand multidimensionality and time dependence of heat transfer, 

and the conditions under which a heat transfer problem can be 
approximated as being one-dimensional,

• Obtain the differential equation of heat conduction in various 
coordinate systems, and simplify it for steady one-dimensional case,

• Identify the thermal conditions on surfaces, and express them 
mathematically as boundary and initial conditions,

• Solve one-dimensional heat conduction problems and obtain the 
temperature distributions within a medium and the heat flux,

• Analyze one-dimensional heat conduction in solids that involve heat 
generation, and

• Evaluate heat conduction in solids with temperature-dependent 
thermal conductivity.



Introduction

• Although heat transfer and temperature are 
closely related, they are of a different nature.

• Temperature has only magnitude

it is a scalar quantity.

• Heat transfer has direction as well as magnitude 

it is a vector quantity.

• We work with a coordinate system and indicate 
direction with plus or minus signs. 

Introduction ─ Continue
• The driving force for any form of heat transfer is the 

temperature difference.

• The larger the temperature difference, the larger the 
rate of heat transfer.

• Three prime coordinate systems:
– rectangular (T(x, y, z, t)) ,

– cylindrical (T(r, , z, t)),

– spherical (T(r, , , t)).



Classification of conduction heat transfer problems:

• steady versus transient heat transfer,

• multidimensional heat transfer,

• heat generation.

Introduction ─ Continue

Steady versus Transient Heat Transfer

• Steady implies no change with time at any point 
within the medium

• Transient implies variation with time or time 
dependence



Multidimensional Heat Transfer

• Heat transfer problems are also classified as being:
– one-dimensional,

– two dimensional,

– three-dimensional.

• In the most general case, heat transfer through a 
medium is three-dimensional.  However, some 
problems can be classified as two- or one-dimensional 
depending on the relative magnitudes of heat transfer 
rates in different directions and the level of accuracy 
desired.

• The rate of heat conduction through a medium in 
a specified direction (say, in the x-direction) is 
expressed by Fourier’s law of heat conduction
for one-dimensional heat conduction as:

• Heat is conducted in the direction 

of decreasing temperature, and thus 

the temperature gradient is negative 

when heat is conducted in the positive x-
direction.
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General Relation for Fourier’s Law of 
Heat Conduction

• The heat flux vector at a point P on the surface of 
the figure must be perpendicular to the surface, 
and it must point in the direction of decreasing 
temperature

• If n is the normal of the 

isothermal surface at point P, 

the rate of heat conduction at 

that point can be expressed by 

Fourier’s law as
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dn
  (2-2)

General Relation for Fourier’s Law of 
Heat Conduction-Continue

• In rectangular coordinates, the heat conduction 
vector can be expressed in terms of its components as

• which can be determined from Fourier’s law as
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Heat Generation
• Examples:

– electrical energy being converted to heat at a rate of I2R,

– fuel elements of nuclear reactors,

– exothermic chemical reactions.

• Heat generation is a volumetric phenomenon.

• The rate of heat generation units : W/m3 or Btu/h · ft3.

• The rate of heat generation in a medium may vary 
with time as well as position within the medium.  

• The total rate of heat generation in a medium of 
volume V can be determined from

    (W)gen gen

V

E e dV   (2-5)

One-Dimensional Heat Conduction 
Equation - Plane Wall
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• The change in the energy content and the rate of heat 
generation can be expressed as

• Substituting into Eq. 2–6, we get
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• Dividing by Ax, taking the limit as x 0 and t 0,   

and from Fourier’s law:

The area A is constant for a plane wall  the one dimensional 
transient heat conduction equation in a plane wall is
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The one-dimensional conduction equation may be reduces 
to the following forms under special conditions 
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One-Dimensional Heat Conduction 
Equation - Long Cylinder
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• The change in the energy content and the rate of heat 
generation can be expressed as

• Substituting into Eq. 2–18, we get
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• Dividing by Ar, taking the limit as r 0 and t 0,   

and from Fourier’s law:



Noting that the area varies with the independent variable r
according to A=2rL, the one dimensional transient heat 
conduction equation in a plane wall becomes
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The one-dimensional conduction equation may be reduces 
to the following forms under special conditions 
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One-Dimensional Heat Conduction 
Equation - Sphere
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General Heat Conduction Equation
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Repeating the mathematical approach used for the one-
dimensional heat conduction the three-dimensional heat 
conduction equation is determined to be    
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Cylindrical Coordinates
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Spherical Coordinates
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Boundary and Initial Conditions

• Specified Temperature Boundary Condition

• Specified Heat Flux Boundary Condition

• Convection Boundary Condition

• Radiation Boundary Condition

• Interface Boundary Conditions

• Generalized Boundary Conditions

Specified Temperature Boundary 
Condition

For one-dimensional heat transfer 
through a plane wall of thickness 
L, for example, the specified 
temperature boundary conditions 
can be expressed as

T(0, t) = T1

T(L, t) = T2

The specified temperatures can be constant, which is the 
case for steady heat conduction, or may vary with time.

(2-46)



Specified Heat Flux Boundary 
Condition

dT
q k

dx
  

Heat flux in the 
positive x-
direction

The sign of the specified heat flux is determined by 
inspection: positive if the heat flux is in the positive 
direction of the coordinate axis, and negative if it is in 
the opposite direction.

The heat flux in the positive x-
direction anywhere in the medium, 
including the boundaries, can be 
expressed by Fourier’s law of heat 
conduction as
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Two Special Cases
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Convection Boundary Condition
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Radiation Boundary Condition
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Interface Boundary Conditions

0 0( , ) ( , )A B
A B

T x t T x t
k k

x x

 
  

 

At the interface the requirements are:
(1) two bodies in contact must have the same 

temperature at the area of contact,
(2) an interface (which is a 

surface) cannot store any 
energy, and thus the heat flux
on the two sides of an 
interface must be the same.
TA(x0, t) = TB(x0, t)

and
(2-53)
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Generalized Boundary Conditions
In general a surface may involve convection, radiation, 
and specified heat flux simultaneously. The boundary 
condition in such cases is again obtained from a surface 
energy balance, expressed as

Heat transfer
to the surface
in all modes

Heat transfer
from the surface

In all modes
=

Heat Generation in Solids
The quantities of major interest in a medium with heat 
generation are the surface temperature Ts and the 
maximum temperature Tmax that occurs in the medium 
in steady operation.



The heat transfer rate by convection can also be 
expressed from Newton’s law of cooling as
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For uniform heat generation within the medium
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Heat Generation in Solids -The Surface 
Temperature
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Heat Generation in Solids -The Surface 
Temperature

For a large plane wall of thickness 2L (As=2Awall and 
V=2LAwall)
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Heat Generation in Solids -The maximum 
Temperature in a Cylinder (the Centerline)

The heat generated within an inner 
cylinder must be equal to the heat 
conducted through its outer surface. 
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Variable Thermal Conductivity, k(T)

• The thermal conductivity of a 
material, in general, varies with 
temperature.

• An average value for the 
thermal conductivity is 
commonly used when the 
variation is mild.

• This is also common practice 
for other temperature-
dependent properties such as 
the density and specific heat.



Variable Thermal Conductivity for 
One-Dimensional Cases
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When the variation of thermal conductivity with 
temperature k(T) is known, the average value of the thermal 
conductivity in the temperature range between T1 and T2

can be determined from

The variation in thermal conductivity of a material 
with can often be approximated as a linear function 
and expressed as

0( ) (1 )k T k T 
 the temperature coefficient of thermal conductivity.

(2-75)

(2-79)

Variable Thermal Conductivity

• For a plane wall the 
temperature varies linearly
during steady one-
dimensional heat conduction 
when the thermal conductivity
is constant. 

• This is no longer the case 
when the thermal conductivity 
changes with temperature 
(even linearly). 


