Chapter 3: Pressure and Fluid

Statics

©

Pressure

® Pressure is defined as a normal force exerted by a ﬂuid per unit

dared.

® We speak of pressure only when we deal with a gas or a
liquid. The counterpart of pressure in solids is normal stress.
® Units of pressure are N/m?, which is called a pascal (Pa).

® Since the unit Pa is too small for pressures encountered in
practice, kilopascal (1 kPa = 103 Pa) and megapascal (1 MPa =

10° Pa) are commonly used.
® Other units include bar, atm, kgf/ cm?, Ibf/ in? =psi.

1 bar = 10° Pa = 0.1 MPa = 100 kPa
| atm = 101,325 Pa = 101.325 kPa = 1.01325 bars




Pressure

® Pressure is also used for solids as
synonymous to normal stress, which is
force acting perpendicular to the

surface per unit area.

e This also explains how a person can

walk on fresh snow without sinking by

P=3psi P=6psi

wearing large snowshoes, and how a Pogm 10T
Afeet

person cuts with little effort when using

a sharp knife.

Absolute, gage, and vacuum pressures

e Actual pressure at a give point is called

the absolute pressure.

® Most pressure-measuring devices are
calibrated to read zero in the
atmosphere, and therefore indicate gage
pressure, P =P, -P

gage atm*
® Pressure below atmospheric pressure are

called vacuum pressure,

Pvac:Patrn - Pa‘bs

Some basic pressure gages.
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Absolute, gage, and vacuum pressures

Absolute

vacuum

~

atm

Absolute

vacuum
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Pressure at a Point

® Pressure is the compressive force per unit area
® Pressure at any point in a fluid is the same in all directions.

® Pressure has a magnitude, but not a specific direction, and

thus it is a scalar quantity.

~
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Pressure at a Point

From Newton’s second law, a force balance in the x- and z

directions gives
S F,=ma, =0 P Az — Pyisinf =0

1
> F.=ma,=0: P;M—P;fcosﬂ—apgﬁxﬂz=0

> |
P,—P;——pglAz=0

2
Ao I P

Thus we conclude that the pressure at a point in aﬂuid has the same magnitude in all directions.

It can be shown in the absence of shear forces that this result is applicable to fluids in

P|_P;=D

(Ay=1)

LY

Forces acting on a wedge-shaped fluid
element in equilibrium.

motion as well as fluids at rest.

Variation of Pressure with Depth

1<

® In the presence of a gravitational field,

pressure increases with depth because

more fluid rests on deeper layers.

® To obtain a relation for the variation of

pressure with depth, consider rectangular

D> F,=ma,=0
P,AX—PAX— pgAXAz =0

element

® Force balance in z-direction gives

_':l L l':'_ * Dividing by Ax and rearranging gives

. AP =P, -P = pgAz =y Az

-
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Pressure in a fluid increases linearly with depth.

The vertical distance z is sometimes used as a measure c_)f

pressure, and it is called the pressure head.




Variation of Pressure with Depth

F= F.-.lm + pgh or P__ = pgh
Pi=Pum o

O g *Liquids are essentially incompressible substances, and thus
i the variation of density with depth is negligible. This is also
i : )
{ the case for gases when the elevation change is not very

LY (3) P, =Py + ph large.
*The variation of density of liquids or gases with

Pressure in a liquid at rest increases
linearly with distance from the free

temperature can be significant, also, at great depths such as

those encountered in oceans, the change in the density of a

surface. liquid can be significant because of the compression by the

*The gravitational acceleration g varies from 9.807 m/ s? at sea level Py =1am
t0 9.764 m/s? at an elevation of 14,000 m where large passenger

planes cruise.

*This is a change of just 0.4 percent in this extreme case. P = 1006 am

*Therefore, g can be assumed to be constant with negligible

tremendous amount of 1iquid Weight above.

AIR
(A 5-m-high room)

€rror. In a room filled with a gas, the

N

variation of pressure with height
is negligible.

Variation of Pressure with Depth

AP=YA2  ar0
dz
When the variation of density with elevation is known, the pressure difference between points 1

and 2 can be determined by integration to be

7

AP=P,— P =—| pgdz
7




" Example: Hydrostatic Pressure in a Solar
Pond with Variable Density

Sun

Increasing salinity
ﬂ and density

_ 3
Po= 10410 kg/m v

~, Surface zone

H=4m Gradient zone

@
=
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=
=
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=
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Thickness of the surface zone is 0.8 m.
P, = pgh, = (1040 kg/m*)(9.81 m/s*)(0.8 (—)zs.lﬁm
1= pghy=( g/m)(9 $7)(0.8 m) l(](l}kg-m.fsz
I z - Z
dP = pg dz P—P1=jpgdz - P=P,+Jp 1+mn2(——)gdz
- o 4 H
4H aT oz
P=P — sinh ™ '{ tan— =
1+ pog — sinh ( 411)
(gage pressure)

44m) 4 1 kN —
@r 2=H=4m P =8.16kPa+ (1040 kg/m’)}9.81 m/s’) —— sinh l(mgi)(mmm-mf&) P, = 54 kPa

p
Variation of Pressure with Depth

® Pressure in a fluid at rest is independent of the shape of the
container.

® Pressure is the same at all points on a horizontal plane in a given

fluid.

® The pressure force exerted by the fluid is always normal to the
surface at the specified points.

P

atm
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A 4 ®

100 ft

P

If you hold your breath on ascent, your lung
volume would increase by a factor of 4, which
would result in embolism and/or death.

N

Scuba Diving and Hydrostatic Pressure

® Pressure on diver at 100 ft?

kg m Im
P —pgz=|998== |/ 9.81— |(100 ft
ez =~ P9 ( mJ[ szj( )(3.28ft]
—298.5kPa| —2"™ ) _5 95amm
101.325kPa
P =P +P._ =2095atm+latm=3.95atm

abs,2 = gage,2 atm

® Danger of emergency

ascent?

~




Pascal’s Law

F|=P1A1

® Pressure applied to a confined

fluid increases the pressure

throughout by the same amount.

® In picture, pistons are at same

height:

AR A

® Ratio A,/A, is called ideal

mechanical advantage

The Manometer

Gas

An elevation change of Azin a
fluid at rest corresponds to

AP/ pg.

A device based on this is called a
manometer.

A manometer consists of a U-
tube containing one or more
fluids such as mercury, water,
alcohol, or oil.

Heavy fluids such as mercury
are used if large pressure
differences are anticipated.

Two points at the same elevation
in a continuous fluid at rest are
at the same pressure.




Mutlifluid Manometer

F;

atm

Fluid 1 » ¢ For multi-fluid systems

® Pressure change across a fluid column of height
his AP = Pgh.
® Pressure increases downward, and decreases

Fluid 2 upward.

h2 ® Two points at the same elevation in a continuous

fluid are at the same pressure.

Fluid 3

Py + pighy + poghy + paghy = P

N

~
Measuring Pressure Drops

e Manometers are well--suited to
A flow section measure pressure drops across
or flow device .
valves, pipes, heat exchangers,

—————— = etc.

| I * Relation for pressure drop P;-P,
@I I(2) is obtained by starting at point 1
__________ and adding or subtracting Ogh

terms until we reach point 2.

Py + pgla + h) — pgh — pga = P
! g ‘Pl_ﬂ:{f!:—p.}gh

P
If fluid in pipe is a gas, p,>>p, and P-P,= p,gh

P
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Other Pressure Measurement Devices

> @)

\\_: [ (((c/ ,;,/','
) \\‘-—:f.
C-type Spiral

Twisted tube
Helical

Tube cross section

Various types of Bourdon tubes used
to measure pressure.

* Another type of commonly used mechanical
pressure measurement device is the
Bourdon tube, named after the
French engineer and inventor Eugene
Bourdon (1808—1884), which consists of a
hollow metal tube bent like a hook whose
end is closed and connected to a dial
indicator needle.

® When the tube is open to the atmosphere,
the tube is undeflected, and the needle on
the dial at this state is calibrated to read zero
(gage pressure). When the fluid inside the
tube is pressurized, the tube stretches and
moves the needle in proportion to the

pressure applied.

~
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Other Pressure Measurement Devices

® Electronics have made their way into every aspect of life,

including pressure measurement devices. Modern pressure

sensors, called pressure transducers, use various techniques

to convert the pressure effect to an electrical effect

such as a change in voltage, resistance, or capacitance.

Pressure transducers are smaller and faster, and they can be more

sensitive, reliable, and precise than their mechanical

counterparts. They can measure pressures from less than a

millionth of 1 atm to several thousands of atm.

~




Other Pressure Measurement Devices

° Strain-gage pressure transducers work by having a diaphragm

deflect between two chambers open to the pressure inputs.

* Piezoelectric transducers, also called solid-state pressure
transducers, work on the principle that an electric potential is

generated in a crystalline substance when it is subjected to mechanical

pressure .

» This phenomenon, first discovered by brothers Pierre and Jacques

Curie in 1880, is called the piezoelectric (or press-electric) effect.

» Piezoelectric pressure transducers have a much faster frequency
response compared to the diaphragm units and are very suitable for
high-pressure applications, but they are generally not as sensitive as the

diaphragm—type transducers.

~
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The Barometer

W=pghA

\ 5[

[ ]
\ Mercury /

PC+pgh:Pa

P =p09h

I

P

atm

tm

~

called a barometer; thus, atmospheric pressure is

Atmospheric pressure is measured by a device

often referred to as the barometric pressure.

P, can be taken to be zero since there is only Hg
vapor above point C, and it is very low relative to
P

atm®
Change in atmospheric pressure due to elevation
has many effects: Cooking, nose bleeds, engine
performance, aircraft performance.

Example: a 2.0-L car engine will act like a 1.7-L
car engine at 1500 m altitude (unless it is
turbocharged) because of the 15 percent drop in
pressure and thus 15 percent drop in the density

of air.

The lower pressure and thus lower density
also affects lift and drag:

airplanes need a longer runway at high altitudes
to develop the required lift

and airplanes climb to very high altitudes for

cruising for reduced drag and thus better fuel

efficiency. /




The Barometer

® A frequently used pressure unit is the standard atmosphere, which is defined as the
pressure produced by a column of mercury 760 mm in height at 0°C
(pHg = 13595 kg/ mg) under standard gravitational acceleration (g =9.807m/ sz).

* If water instead of mercury were used to measure the standard atmospheric

pressure, a water column of about 10.3 m would be needed.

e 1 mmHg =1 torr Elevation (m) Standard atmospheric
pressure, P, (kPa)

0 101,325
1000 89,98
1610 (Denver, USA) 83,40
2000 79,50
5000 54,05
10000 26,50

20000 5,53
\ -

Fluid Statics

¢ Fluid Statics deals with prob]ems associated with fluids at
rest.

® In fluid statics, there is no relative motion between adjacent

fluid layers.

® Therefore, there is no shear stress in the fluid trying to
deform it.

® The only stress in fluid statics is normal stress
e Normal stress is due to pressure

® Variation of pressure is due only to the Weight of the fluid — fluid
statics is only relevant in presence of gravity fields.

* Applications: Floating or submerged bodies, water dams and
gates, liquid storage tanks, etc.

® The complete description of the resultant hydrostatic force
acting on a submerged surface requires the determination of
the magnitude, the direction, and the line of action of the

@ force. D




Hoover Dam

C45:300-000044




Hoover Dam

* Example of elevation head z
converted to velocity head
V2/2g. We'll discuss this in
more detail in Chapter 5

(Bernoulli equation).

Hoover Dam
C45-300-021094

- /
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Hydrostatic Forces on Plane Surfaces

® On a plane surface, the
hydrostatic forces form a system
of parallel forces

* For many applications,

magnitude and location of
application, which is called
center of pressure, must be

determined.

“peh

(a) P,

atm

considered (b) P, subtracted

When analyzing hydrostatic forces on
submerged surfaces, the atmospheric
pressure can be subtracted for
simplicity when it acts on both
sides of the structure.




Resultant Force

Pr=P,,., P=Py+pgysinf Pressure
" ' ’ 0 ¥ / distribution
- Pressure prism
of volume V
z
P=Py+pgh
oS ke y \ Plane surface
N Centroid
Center of pressure dA

Plane surface

of area A V= Ja’\/: JP dA =F,

Hydrostatic force on an inclined plane surface

completely submerged in a liquid.

The magnitude of Fy acting on a plane surface of a completely
submerged plate in a homogenous fluid is equal to the product

of the pressure P at the centroid of the surface and the area A

N of the surface. )

~
Resultant Force

The absolute pressure at any point on the plate is

Fe=P,

ave

P=PFy+pgysinf 0

Il

P = Py, + pgh= Py + pgysin#

Fp= J PdA = J (Py + pgysind)dA = PgA + pgsinfl J ydA
A A A

| J
}.‘C = — -1[: dA
A A

Centroid

Center of pressure Fp=(Py+ pgycsin A = (Py + pghc)A = PcA=P

A

ave

Plane surface

of area A C
P atm / Free surface
- f
he TN
T
(.—\-'('"\
\\
. . Ay — =
Note: The magnitude of the resultant force acting on \ = Pe= Py + pehe

Centroid

a plane surface of a completely submerged plate in a —

homogeneous (constant density) fluid

is equal to the product of the pressure P at the The pressure at the centroid of a

surface is equivalent to the average
pressure on the surface. /

Kcentroid of the surface and the area A of the surface




Center of Pressure

Line of action
0
v ® Line of action of resultant force
F=P A does not pass through the
centroid of the surface. In general, it
Ye lies underneath where the pressure is

Fp=F-A Fe

z higher.
® Vertical location of Center of
Pressure is determined by equation
the moment of the resultant force to
the moment of the distributed
pressure force.

Center of
pressure

Centroid
of area

yplp = J yP dA = J V(P + pgysin ) dA = Py J vdA + pgsind J ¥ dA
A A A A

yeFr =PyycA + pgsinb I, o

I.o= J v-dA s the second moment g"area (also called the area moment gfinertia) about the x-axis.
A

/
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Center of Pressure

Line of action The second moments of area about two parallel axes
o 0 are related to each other by the parallel axis theorem,
— 9 which in this case is expressed as
Ioo=1.ctycA
A
Z - . “
Yp Fp=(Py + pgvesin A

Center of VpFp =Pyyc A + pgsinbt [, o
enter o
pressure

Centroid

of area _ I c
Yr=D¥cT . .
[ve + Py/(pg sin 6)]A

For P, =0, which is usually the case when the atmospheric pressure is ignored, it simplifies to

I.c

X,

YeA

Ve =Ye+
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Center of Pressure

|

b

¥

bi2

|

al2 al2
A=ab I .= ab3/12

(a) Rectangle

bi2

¥

@Ry

N

A=mR>, I.Ul c= wR4
(b) Circle

al2 al2
A=abi2, I, ~=ab*36

() Triangle

AR

SRR

A=mRY2, I, ~=0.109757R*

(€) Semicircle

Vo
<

=k

—a—

A=mab I .= wrab3i4

(c) Ellipse
y
; c
4 7 Yinx
fo———t1 ﬂ
A =mabl2, I, ~=0.109757ab’

The centroid and the centroidal moments of inertia for some common geometries.

XX,

(f) Semiellipse

/
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Hydrostatic Forces on Curved Surfaces

Curved

surface

Horizontal projection

of the curved surface

Vertical projection
of the curved surface

| P_I.

s

[T

Liquid
block

_‘

Free-body diagram
of the enclosed
liquid block

® F, on a curved surface is more involved since it requires

the surface.

integration of the pressure forces that change direction along

® Easiest approach: determine horizontal and vertical

components Fy, and F v separately.

~




Hydrostatic Forces on Curved Surfaces

® Horizontal force component on curved surface: F,=F.
Line of action on vertical plane gives y coordinate of
center of pressure on curved surface.

® Vertical force component on curved surface: F,=F +W,
where W is the weight of the liquid in the enclosed block
W=pgV. x coordinate of the center of pressure is a
combination of line of action on horizontal plane
(centroid of area) and line of action through volume

(centroid of volume).
® Magnitude of force F=(F,*+F?)!"?
* Angle of force is & = tan!(F,/F,)

Hydrostatic Forces on Curved Surfaces

When the curved surface is a circular arc (full circle or

rsaye any part of it), the resultant hydrostatic force acting on

forces the surface always passes through the center of the

\ \ circle. This is because the pressure forces are normal
o to the surface, and all lines normal to the surface of a
Resultant / . .
force ~_ circle pass through the center of the circle.

Circular :
surface %
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Plane surface in a multilayered fluid:

0il Fp = E Fp ;= E Pe i A;

Water

Buoyancy and Stability

* Itis a common experience that an object feels lighter and weighs

less in a liquid than it does in air.
® Also, objects made of wood or other light materials float on water.

® These and other observations suggest that a fluid exerts an upward
force on a body immersed in it. This force that tends to lift the
body is called the buoyant force and is denoted by F,

® Buoyancy is due to the fluid displaced by a body. F,= Pgv.

* Archimedes principal : The buoyant force acting on a body
immersed in a fluid is equal to the Weight of the fluid displaced by
the body, and it acts upward through the centroid of the

displaced volume.
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Buoyancy and Stability

‘ Ava
£ Pf.?m
L_I_ %
P8 (s + h)A

A flat plate of uniform thickness h
submerged in a liquid parallel to the

free surface.

*The buoyant force is caused by the increase of pressure in a

fluid with depth.

*The difference between these two forces is a net upward

force, which is the buoyant force.
JL_."' - lll:-h_.”..,“ = -Fu.-,— = Pr\s + A — J"i,_Q‘,‘f.J. = ;J_,-l]‘?.f;l_-{ = .IIJf..L:ILJlI

*The relation p,gV is simply the weight of the liquid whose volume is
equal to the volume of the plate.

*Thus, we conclude that the buoyant force acting on the plate is equal
to the weight of the liquid displaced by the plate.

*The buoyant force is independent of the distance of the body
from the free surface. It is also independent of the density of the

solid body,

/

-

212 BC)

displaced volume

*The weight and the buoyant force must have the same line of
principle, after the Greek mathematician Archimedes (287—

*The buoyant force F, acts upward through the centroid C of the

Buoyancy and Stability

action to have a zero moment. This is known as Archimedes’
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Buoyancy and Stability

® Buoyancy force F, is equal only

to the displaced volume
m Floating
PSB85 body Iofg Vdisp]aced
\_/ Fluid ® Three scenarios possible

1. <py..;: Floating bod
Suspended body Pbody = Ppaid g Pody
(neutrally buoyant) 2. Photy™Ppua Neutrally buoyant

3 Prot” Ppuidt Sinking body

1K

Sinking
Py P~ 08 body

For floating bodies, the weight of the entire body must be equal to the bouyant force, which is the

weight of the fluid whose volume is equal to the volume of the submerged portion of the

ﬂoating body,

]Ir-.r_ — |||| —_— |'|l‘.|l:|_.."l = i} ¥ e\
£y Ffio

Y'su e, hody
sub Fove, bodys ¥ total L
\/ i
& ¥ tota Fi

g
Buoyancy and Stability

® We might think that the buoyant force exerted by gases such as air is
negligible. This is certainly the case in general, but there are significant
exceptions. For example, the volume of a person is about 0.1 m?, and
taking the density of air to be 1.2 kg/ m?, the buoyant force exerted by air

on the person is i
Fp=psgV=1(12 kg.f'|113}[9.81 m/s”)0.1 m')=1.2N

The weight of an 80-kg person is 80 x 9.81 = 788 N.Therefore, ignoring

the buoyancy in this case results in an error in weight of just 0.15 percent.

* But the buoyancy effects in gases dominate some important natural
phenomena such as the rise of warm air in a cooler environment and thus
the onset of natural convection currents, the rise of hot-air or
helium balloons, and air movements in the atmosphere.

* A helium balloon, for example, rises as a result of the buoyancy effect until
it reaches an altitude where the density of air (which decreases with
altitude) equals the density of helium in the balloon.




Example: Floating Drydock

Submarine undergoing repair work on
board the AFDM-10

Auxiliary Floating Dry Dock Resolute
(AFDM-10) partially submerged

Using buoyancy, a submarine with a displacement of 6,000 tons can be lifted!

©

Example: Submarine Buoyancy and Ballast

| B Trim Tank

e B
'Il i
- TNl T AT

I Main Ballast Tanks  Pressure Hull
[7] Fuel Tanks [ Free Flood Area /
B Trim Tanks

|

AR TLEE AR AR LR R

70044,
-- - W/W%W/tfﬂ

e Submarines use both static and dynamic depth control.
Static control uses ballast tanks between the pressure hull

and the outer hull. Dynamic control uses the bow and stern

planes to generate trim forces.




Example: Submarine Buoyancy and Ballast

Normal surface trim SSN 711 nose down after accident

which damaged fore ballast tanks

Example: Submarine Buoyancy and Ballast

u Lk -—

Damage to SSN 711
(USS San Francisco) after

running aground on 8 January

2005.




Example: Submarine Buoyancy and Ballast

Ballast Control Panel: Important station for controlling depth of submarine

Stability of Immersed and Floating
Bodies

* An important application of the buoyancy concept is the
assessment of the stability of immersed and ﬂoating bodies with

no external attachments. This topic is of great importance in the

design of ships and submarines \Q/

(a) Stable

O

() Neutrally stable

R

(c) Unstable

Stability is easily understood by
@ analyzing a ball on the floorj




Stability of Immersed Bodies

Fluid Weight Restoring moment

(a) Stable (b) Neutrally stable (¢) Unstable

* Rotational stability of immersed bodies depends upon relative location
of center of gravity G and center of buoyancy B.
¢ G below B: stable
® G above B: unstable

® ( coincides with B: neutrally stable.

Stability of Immersed Bodies

e A stable design for a submarine calls for the engines and the
cabins for the crew to be located at the lower half in order to
shift the Weight to the bottom as much as possible.

® Hot-air or helium balloons (which can be viewed as being
immersed in air) are also stable since the cage that carries the
load is at the bottom.
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Stability of Floating Bodies

Metacenter —,

| an ;"'

ﬁ' % LT * If body is bottom heavy (G
vl g I ""‘"-- lower than B), it is always stable.

v , i
| i '
| B‘ " . .
Ef’ [ N e Floating bodies can be stable
i : Restoring / i when G is higher than B due to
moment
(a) Stable (b) Stable (¢) Unstable Shift ln location Of center

/W\ buoyancy and creation of
restoring moment.
® Measure of stability is the

metacentric height GM. 1If

A ball in a trough between two hills —
is stable for small disturbances, but GM>O’ Shlp 18 Stable’

unstable for large disturbances.

The metacenter may be considered to be a fixed point for most hull shapes for small rolling angles
up to about 20°.

N
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" Rigid-Body Motion

oP d The differential fluid element behaves like a rigid body, Newton’s
1 (P +E Ejm % second law of motion

oF = om - d

|
|
I
| dz
I
|

pgdxdyds® P D dm = p dV = p dx dy dz §
s 2 '
,,’ ’ 4 dx
L dy | P Forces: 1) body force (gravity force)
. 5 (P e ?>d-" dy 2) surface forces (pressure forces)

The surface and body forces acting
on a differential fluid element
in the vertical direction.

» Pressure represents the compressive force applied on the fluid element by the surrounding fluid

and is always directed to the surface. | G
ree
surface

~




Rigid-Body Motion

the pressure forces acting on the bottom and top faces

dP df;
t?Fg . (F——E)drd_v— (P

az

dP dz daP
+—— |dxdy=—dxdvdz
2 : az ;

aZ

Similarly, the net surface forces in the x- and y-directions are

) apP
8Fy , = —— dx dy dz
: rh

aP
0F; . = ——dx dydz and
’ ox :

The surface force acting on the entire element:

IS.F}:I'_ 1.? + ﬁF&'_ ,'.j + {SFS',:E‘:

dP - 4P — dP— =
—(— i +—J +—L) dxdydz = — VP dxdydz
dx ay dz

® The net surface force acting on the element in the z-direction is the difference between

aP dz
(P +— —)d.r dy
iz 2

|2

|
I
I
| dz
I
|

pgdx d\ d" Plr. 3. 2)

aP dz
—— — |dxdy
iz 2

The surface and body forces acting
on a differential fluid element
in the vertical direction.

Rigid-Body Motion

P -
—k

'y il

. —* ‘.I'.ID‘ -
Pressure gradlent . VP = il i+
ox

P -
—j+
Jy

—

in vector form.
The weight of the element acting in the negative z-direction

6!?”_: = —gﬁmE = —pg dx dy dzk

The total force acting on the element becomes

F = 8F5 + 6Fy = —(VP + pgk) dx dy dz

The general equation of motion for a fluid that acts as a rigid
body (no shear stresses)

= Am - om = pdxdydz

Rigid-body motion of fluids: VP + pgk = —pa

N

dy |
(v
x ¥

V or “del” is a vector operator that is used to express the gradients of a scalar function compactly

(P + E) d—) dx dy
az 2

|
I
|
i dz
|

pgdxdy d:f Pl y. 2)

—_
//_ _*
//
s '

#

aP dz
S
az 2

The surface and body forces acting
on a differential fluid element

in the vertical direction. /




Rigid-Body Motion " ope

surface

A-‘.mnk wb&
h, Liquid ’ H
Rigid-body motion of fluids: VP + pgk=—pa L=
b
. aP- P> AP~ N L
Explicitly: —i+—j+—k+ pgk=—plai +a,j+ ak)
ax ay oz ' ‘

In scalar form in the three orthogonal directions

aP aP dP
—=-—-pd,, —=—pd,, and —=—p(g+a)
aX dy 0z

a,a, and a, are accelerations in the x-, y-, and z-directions, respectively.
X )/ V4

N

g
Special Case 1: Fluids at Rest

aP dP dP
General case: — = —pa,, —= —pa,, and —= —p(g + a,)
X rJ_‘I.' 0z
. P 9P dP
Fluids at rest: —=0. —=0. and = =
oX a¥y az

These relations are applicable for both compressible and incompressible

fluids.

pgh
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Special _Case 2 Free Fall of a Fluid Body

dP dP

General case: —— = —pd,, — = —pd,, and —= —p(g+a,)
X ¥ 07

aX,a]:()andaZ:-(q
i _op_ap _

ax ay dz

Free-falling fluids: 0 — P = constant

P] lF.I
(Actually, the gage pressure is slightly above zero due to surface h|  Liquid. p n| Liquid. p
tension, which holds the drop intact.)
] [
1 P,=P, TP2=P]+2;;gFr
a,=-g a=g
{a) Free fall of a (b) Upward acceleration
liquid of a liquid with a, = +g

The effect of acceleration on the
pressure of a liquid during free
fall and upward acceleration.

N

~

/

: Acceleration on a Straight Path

P apP 9P
_— — — Da P d. —_— - + )
ax pa . 3y an " plg +a.)
|2
Total derivative of P(x,y): dP _P s P dy Free
OX oy Sl A
dP = —pa, dx — p(g + a;) dz TR

b

Rigid-body motion of a liquid in a
linearly accelerating tank.

For p=constant, the pressure difference between two points 1 and 2 in

the fluid.

P, — Py = —pafx;— x)) — plg +a)(z: — 7))

~




: Acceleration on a Straight Path

Py — Py = —pafx; — x) — plg +alz — 1) L.
SLT'E]CC
e a
Point 1: (x,=0,y,=0) P(0,0)=P, N T L
Point 2: any xandy P(x,y)=P z a,,

Pressure variation: P=FPy—pax—p(gt+alk
Rigid-body motion of a liquid in a
linearly accelerating tank.

> p,=p, EEE)

Vertical rise of surface: Az, =zp—20=—

ay

g Ta,

(X2 — x1)

z_is the z-coordinate qf the liquid’s free su{face

N /

: Acceleration on a Straight Path

The equation for surfaces of constant pressure, called isobars, is
obtained setting dP =0 and replacing z by z,, ., which is the z- z

isobar’

z N
coordinate (the vertical distance) of the surface as a function of x. *

Free

/ surface

dP = —pa,dx — p(g +a))dz = (

[

A‘:.r =In

dz: b i)

" 150b 4
Surfaces of constant pressure: —— = ———— = constant = _tan0
dx g+a,

Constant
pressure
lines

Lines of constant pressure (which
are the projections of the surfaces of
constant pressure on the xz-plane) in
a linearly accelerating liquid, and the
vertical rise.

N /




Rotation in a Cylindrical Container

II(]

Axis of
rotation

Free ‘

surface \_
X_\_ - _JL ,74

~

» We know from experience that when a glass filled
with water is rotated about its axis, the fluid is
forced outward as a result of the so-called centrifugal
force, and the free surface of the liquid becomes

concave. This is known as the forced vortex motion.

» There is no deformation, and thus there can be no
shear stress, and every fluid particle in the container

moves with the same angular velocity.

/

Rotation in a Cylindrical Container

Free

II(]

surfe

Axis of
rotation

ace ‘
N

~

» The centripetal acceleration of a fluid
particle rotating with a constant angular
velocity of @ at a distance r from the axis of
rotation is r@” and is directed radially toward the axis
of rotation (negative r-direction).

a =—ro’

P pa—prer , Popa-0, P (g+a)=-pg
& = PR = —o==pa,=0 . —=—p(g+a,)=—p

Total derivative of P(r,z): dP :‘2—Pdr +2—sz
r z

dP = prw* dr — pg dz
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Rotation in a Cylindrical Container

i
(i__D “ dP = pro’ dr — pg dz

Free . 3

surface A_l P dP =0 ‘ AZisobar _Tw
\q_l__ <5, max -/ P2 dr g
\_ _/T/ P, =
\__:j_/ P, Surfaces of constant pressure: Lisctai-— ﬁ—[; e o B
\ _ __/j Ps Thus we conclude that the surfaces of constant pressure,
\,__ __// Py including the free surface, are paraboloids of revolution

Surfaces of constant pressure in a
rotating liquid.

The equation for the free surface

Zisobar(rzo) = C] = bc ‘ {,u2 A N
Z=—r +h,

Ly

28

~

/

Rotation in a Cylindrical Container

Axis of
rotation .
The equation of the free surface

| w
Q—"D K B fw? [ @’R*
. ' V= 2wz rdr= 2w —r°+h,|rdr=7wR"
ree | : 0 4g

surface 28
b

r=0 r=

il B Ty
| V=nRh, W ho=h S
h(_. - 0 = = -
Zs i ! 0 C 0 43
h{}
7 w? . _ ) Wl o
T Ly=—1r +h, Free surface: Ty = hy — a4 (Y — 29T)
i 23 5
|
l.. | R
g

i ; = ! i
Maximum height difference: Az, ... = 7,(R) — z2,(0) = = R:

3

i)

~
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Rotation in a Cylindrical Container

Axis of
mla]“on dP = pro’ dr — pg dz
Qﬁ"—D Fjl{r_}l 2 ol
Free ‘ P,— P = (rzs —ry) — pe(z, — ;)
surface \_ 2
-
|
2 i ke Point 1: (r,=0,z,=0) P(0,0)=P,
hy i Point 2: anyrand z P(r,z)=P
4 -
y [ = Pressure variation. P = Py + JI I,j r* — pgz
| '
g

In any horizontal plane, the pressure difference between the center and

edge of the container of radius R is AP = pa)ZRZ /2

- /

4 N
EXAMPLE Rising of a Liquid During Rotation

C |~ Determine the rotational speed at which the
4 —+— liquid will start spilling from the edges of the
f,f‘,}‘u R container.
_E_"'_":'_-_—:\-T"_"?é_ e o 2 w’R*
Z, = hy — 10 (R —2r7) 7 (R) = hy + 2
60 cm Z 8 g
hy=50 cm
- [4glz(R) — kgl [4(9.81 m/sH[(0.6 — 0.5) m] __
w = I.I 5 = { = = ll'_l,H I-u':i[l-".‘i
v . 1 N R’ Y (0.1 m)?
/ l§ R=10'cm
: . @ 198 rad;sfﬁns) 159
n=—= = rpm
p = 850 kg/m’ 27 2w rad/rev\ 1 min ]

The analysis is valid for any liquid since the result is independent of density

or any other fluid property

- /
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Examples of Archimedes Principle

154

-~

The Golden Crown of Hiero Il, King of Syracuse

® Archimedes, 287-212 B.C.
® Hiero, 306-215 B.C.

® Hiero learned of a rumor where the
goldsmith replaced some of the gold in his
crown with silver. Hiero asked Archimedes
to determine whether the crown was pure

gold.
® Archimedes had to develop a

nondestructive testing method

~




4 N
The Golden Crown of Hiero Il, King of Syracuse

® The weight of the crown and nugget are
the same inair: W. = p V. =W = p V.

® If the crown is pure gold, p=p, which
means that the volumes must be the same,
V=V,

* In water, the buoyancy force is B=p,,,,V.

¢ If the scale becomes unbalanced, this
implies that the V_#V , which in turn
means that the p # p

® Goldsmith was shown to be a fraud!

Hydrostatic Bodyfat Testing

® What is the best way to measure body
fat?

* Hydrostatic Bodyfat Testing using
Archimedes Principle!

" FOR TIMES AND LOCATIONS
CALE: n’?id_.' el

Firnss mqu)l 0 '\

m1' TESTI {

® Process

® Measure body weight W=p,,, V

® Get in tank, expel all air, and measure
apparent weight I,

® Buoyancy force B =W-W, = p,,,,V. This
permits computation of body volume.

* Body density can be computed
Progy =W/ V.

* Body fat can be computed from
formulas.




Hydrostatic Bodyfat Testing in Air?

® Same methodology as Hydrostatic

testing 1n water.

® What are the ramifications of using
air?
® Density of air is 1/1000th of water.
® Temperature dependence of air.

® Measurement of small volumes.

® Used by NCAA Wrestling (there is a
BodPod on PSU campus).

Example

A 4-m-high, 5-m-wide rectangular plate blocks the end of a 4-m-deep
freshwater channel, as shown in Figure. The plate is hinged about a
horizontal axis along its upper edge through a point A and is restrained from
opening by a fixed ridge at point B. Determine the force exerted on the plate
by the ridge.

—

I
|
I




Example

convenience.

, . . A
Analysis The average pressure on a surface is the pressure at the centroid
(midpoint) of the surface. and is determined to be

B _=F =pgh.-=pg(h/2)
1 kN

Assumptions Atmospheric pressure acts on both sides of the plate. and thus it can be ignored in calculations for

~

s§=1m

=(1000 kg/m’ )(9.81 m/s” )(4/2 m)| ———— ‘ =19.62 kN/m?
' : . 11000 kg-m/s™ |

Then the resultant hydrostatic force on each wall becomes

Fy=P,_A=(19.62 kN/m’)(4 mx5m)=392 kN

The line of action of the force passes through the pressure center, which is 2h/3

Frigee

from the free surface,

2h  2x(4m)
3 3

¥Vp = =2.667m

Taking the moment about point 4 and setting it equal fo zero gives
DM, =0 >  Fp(s+yp)=FyAB

Solving for Fiigee and substituting. the reaction force is determined to be
S+ y 1+2.667)m
Yp oo _( - )

Flpn = ——
ridge AB R sm

(392 kN) = 288 kN

Qr’smssion The difference between Fg and Fiy4.. is the force acting on the hinge at point A.

Example

The hemispherical dome in Figure Weighs 30 kN and is filled with
water and attached to the floor by six equally spaced bolts. What is the
force in each bolt required to hold down the dome?

== Jem
4m
Six
bolts
; Water 2m
[L_IT [L_IT




Example

. Jcm

Solution: Assuming no leakage, the hydrostatic force Six
required equals the weight of missing water, that is, ol Water ~ 2m

T s

the water in a 2-m-diameter cylinder, 6 m high, minus the hemisphere and the small pipe:

Foa = Woreoe - Womemsgme © Waans
= (O790)m2)6) - ©790)2n/3)(2)° - (9790)(1/4)(0.03)%4)
= 738149 - 164033 - 28 = 574088 N

The dome material helps with 30 kN of weight, thus the bolts must supply 574088-30000
or 544088 N. Tthe force in each of 6 bolts is  544088/6 or Fpgy = 90700 N Ans.

N

/

e
Summary

Fugu= ahs-_Palm

[13
o
P-.-uc':Palm_Pahs

> The variation of pressure with elevation in a fluid at rest is given by

P _ _
- P8

» When the density of the fluid is constant, the pressure difference across
a fluid layer of thickness z is

> The absolute and gage pressures in a static liquid open to the
atmosphere at a depth h from the free surface are

P=Pyn+pgh and Py, = pgh

N

~
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Summary

» The magnitude of the resultant force acting on a plane surface of

a completely submerged plate in a homogeneous fluid is

Frp= (Py+ pgho)A = PcA = P, A

ave

» The vertical location of the line of action of the resultant force is
given by
e
[ve + Py/(pg sin 6)]A

yp=Yc Tt

L ¢: the second moment of area about the x-axis passing through the

centroid of the area

Summary

» A fluid exerts an upward force on a body immersed in it. This

force is called the buo)/ant force and is expressed as

Fg = prgV
V is the volume of the body in fluid. This is known as Archimedes’ principle
and is expressed as: the buoyant force acting on a body immersed in a
fluid is equal to the weight of the fluid displaced by the bodys; it
acts upward through the centroid of the displaced volume.

» The general equation cyrmotionfor aﬂuid that acts as a rigid body is
?P + ng = —pa

P aP aP

o P oy = —pay, and 6— = —plg + a,)
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Summary

® During rigid—body motion of a liquid in a rotating cylinder, the

variation of pressure in the liquid is expressed as

po®
P:PU—F?F'—pg:

P, is the pressure at the origin (r = 0,z = 0)

Homework

9,24,29,26,32,34,40,42,46,47,51,61E,64,66,70,73,75,85,88
97E,102,105,108E,111,119,121,123,129,133,137,141E,142,144,
143,146,148




