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John Ninomiya flying a cluster of 72 hellum-fllled balloons over Temecula,
California in April of 2003. The helium balloons displace approximately 230
m3 of air, providing the necessary buoyant force. Don’t try this at home!



Objectives
Determine the variation of pressure in a fluid at
rest

Calculate pressure using various kinds of
manometers

Calculate the forces exerted by a fluid at rest on
plane or curved submerged surfaces.

Analyze the stability of floating and submerged
bodies.

Analyze the rigid-body motion of fluids in
containers during linear acceleration or rotation.



3-1 m PRESSURE

Pressure: A normal force exerted
by a fluid per unit area

1Pa=1N/m’

| bar = 10° Pa = 0.1 MPa = 100 kPa Ao =300cm? |

| atm = 101,325 Pa = 101.325 kPa = 1.01325 bars

| kgf/cm® = 9.807 N/cm® = 9.807 X 10* N/m* = 9.807 X 10 Pa 14 14
= 0.9807 bar 0.23 kgf/cm? 0.46 kgf/cm?

= 0.9679 atm P=68/300=0.23 kgf/cm?

The normal stress (or
“pressure”) on the feet of a

chubby person is much greater
than on the feet of a slim

<. Some
person.

basic
pressure
gages.




Absolute pressure: The actual pressure at a given position. It is
measured relative to absolute vacuum (i.e., absolute zero pressure).

Gage pressure: The difference between the absolute pressure and the
local atmospheric pressure. Most pressure-measuring devices are
calibrated to read zero in the atmosphere, and so they indicate gage
pressure.

Vacuum pressures: Pressures below atmospheric pressure.

Throughout
this text, the
pressure P
will denote
absolute
pressure
unless
specified
otherwise.

Absolute

P:lh.\ o P;mn

Pulm o P;lhs

atm

abs

vacuum

A

atm

Absolute

vacuum



: EXAMPLE 3-1 Absolute Pressure of a Vacuum Chamber

: A vacuum gage connected to a chamber reads 5.8 psi at a location where
g the atmospheric pressure is 14.5 psi. Determine the absolute pressure in the
m chamber.
=
SOLUTION The gage pressure of a vacuum chamber is given. The absolute
pressure in the chamber is to be determined.
Analysis The absolute pressure is easily determined from Eq. 3-2 to be

Py = Py — Pyie = 14.5 — 5.8 = 8.7 psi

Discussion Note that the /ocal value of the atmospheric pressure is used
when determining the absolute pressure.



Pressure at a Point

Pressure is the compressive
force per unit area but it is not

2 Fy=ma,=0: Py AyAz — P,Ayisin6 =0 a vector. Pressure at any point
, in a fluid is the same in all
E F,= ma, = 0: P> AyAx — P;Aylcos 6 — Epg AvAvyAz =0 directions. Pressure has
T ——— T Az = } sin 0] magnitude but not a §pecific
| ' Ax = ] cos B direction, and thus it is a
P,—P,=0 scalar quantity.
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Forces acting on a wedge-shaped

fluid element in equilibrium.
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'

Pressure is a scalar quantity,
not a vector; the pressure at a
point in a fluid is the same in

all directions. v



Variation of Pressure with Depth

AP =P, — P, = pg Az = y,Az When the variation of density
with elevation is known

)

Pl\cl()\\' — Pul\u\'(‘ + /).S\’l'l:.l - P;(hn\‘c + Y\lA:I

P — Pilll]] —I_ p(g)h 01‘ PQLIEIC — p(gh AP - Pz a PI - J p(g} (/:
gag 1
v A
Py
RERRERERRNEE
4 Ax .
S Az B
E =
—\ T
— \_ P2
0 > X
The pressure of a fluid at rest Free-body diagram of a rectangular
increases with depth (as a fluid element in equilibrium.

result of added weight). 8



//] P above — P atm
NE

Pmp =1 atm
h
AIR
(A 5-m-high room)
> - Poeiow = Pam + pgh
P iom = 1:006-atm EI
Pressure in a liquid at

rest increases linearly
with distance from the
free surface.

In a room filled with a gas, the
variation of pressure with height is

negligible.



Py=Pg=Pc=Pp=Pg=Pp=Pg=Pyy +pgh
PH¢PI




Pascal’s law: The pressure applied to a
confined fluid increases the pressure
throughout by the same amount.

F, F, F, A,

— =

PIZP‘) —_ -
: A, A, F, A,

The area ratio A /A, is

called the ideal mechanical
advantage of the hydraulic - p 4,
lift.

Li_fting of a large @ A,
weight by a small
force by the

application of
Pascal’s law.




3—-2 m PRESSURE MEASUREMENT DEVICES

The Barometer

Atmospheric pressure is measured by a device called a barometer; thus,
the atmospheric pressure is often referred to as the barometric pressure.

A frequently used pressure unit is the standard atmosphere, which is
defined as the pressure produced by a column of mercury 760 mm in
height at 0°C (o, = 13,595 kg/m?®) under standard gravitational
acceleration (g = 9.807 m/s?).

Pill]l] — p&qll

The length or the il
cross-sectional area ~
of the tube has no S
effect on the height
l " of the fluid column of
a barometer,

provided thatthe 4222 422 AN
tube diameter is

W=pghA

H large enough to i
P avoid surface tension \
The basic barometer (capillary) effects.




Engine Lungs

At high altitudes, a car engine generates
less power and a person gets less oxygen
because of the lower density of air.
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EXAMPLE 3-2 Measuring Atmospheric Pressure
with a Barometer

Determine the atmospheric pressure at a location where the barometric read-
ing is 740 mm Hg and the gravitational acceleration is g = 9.805 m/s2.

Assume the temperature of mercury to be 10°C, at which its density is
13,570 kg/m3.

SOLUTION The barometric reading at a location in height of mercury col-
umn is given. The atmospheric pressure is to be determined.

Assumptions The temperature of mercury is assumed to be 10°C.

Properties The density of mercury is given to be 13,570 kg/m3.

Analysis From Eq. 3-12, the atmospheric pressure is determined to be

Patm = pgll

: I N 1 kP
= (13,570 kg/ln3)(9.8()5 m/s<)(0.740 m)( ,)( - .,)
I kg - m/s°/\ 1000 N/m~

= 98.5 kPa

Discussion Note that density changes with temperature, and thus this effect
should be considered in calculations.
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EXAMPLE 3-3 Gravity Driven Flow from an IV Bottle

Intravenous infusions usually are driven by gravity by hanging the fluid bottle g
at sufficient height to counteract the blood pressure in the vein and to force g
the fluid into the body (Fig. 3-15). The higher the bottle is raised, the m
higher the flow rate of the fluid will be. (a) If it is observed that the fluid =
and the blood pressures balance each other when the bottle is 1.2 m above ®
the arm level, determine the gage pressure of the blood. (b) If the gage pres-
sure of the fluid at the arm level needs to be 20 kPa for sufficient flow rate,
determine how high the bottle must be placed. Take the density of the fluid
to be 1020 kg/m3.

SOLUTION 1t is given that an IV fluid and the blood pressures balance each
other when the bottle is at a certain height. The gage pressure of the blood
and elevation of the bottle required to maintain flow at the desired rate are
to be determined.

P

atm

IV bottle

1.2 m

15



Assumptions 1 The IV fluid is incompressible. 2 The IV bottle is open to
the atmosphere.

Properties The density of the IV fluid is given to be p = 1020 kg/m?3.
Analysis (a) Noting that the IV fluid and the blood pressures balance each
other when the bottle is 1.2 m above the arm level, the gage pressure of the
blood in the arm is simply equal to the gage pressure of the IV fluid at a
depth of 1.2 m,

Pgage. am = Pabs — Patm = P8Rara —vottte

| kKN I kPa
— (1020 keg/m?)(9.81 mv/s?)(1.20 ( )( )
(1020 kg/m)( SI-20 M\ 1000 ke - 2/ \1 kN/a2

= 12.0 kPa

(b) To provide a gage pressure of 20 kPa at the arm level, the height of the
surface of the IV fluid in the bottle from the arm level is again determined
from Pgge. arm = P8Naem —bore 10 DE

P

h _ gage, arm
arm — botttle P8
_ 20 kPa (1000 kg - m/sz) (1 kN/mz)
(1020 kg/m)(9.81 m/s?) I kN 1 kPa

=2.00m

Discussion Note that the height of the reservoir can be used to control flow
rates in gravity-driven flows. When there is flow, the pressure drop in the tube
due to frictional effects also should be considered. For a specified flow rate,
this requires raising the bottle a little higher to overcome the pressure drop.
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EXAMPLE 3-4 Hydrostatic Pressure in a Solar Pond
with Variahle Density

Solar ponds are small artificial lakes of a few meters deep that are used to
store solar energy. The rise of heated (and thus less dense) water to the sur-
face is prevented by adding salt at the pond bottom. In a typical salt gradi-
ent solar pond, the density of water increases in the gradient zone, as shown
in Fig. 3-16, and the density can be expressed as

'II{ 2 m S
p= PO\} 1 + tan 1H

where p, is the density on the water surface, s is the vertical distance mea-
sured downward from the top of the gradient zone (s = —2), and H is the

thickness of the gradient zone. For H = 4 m, p, = 1040 kg/m3, and a thick-
ness of 0.8 m for the surface zone, calculate the gage pressure at the bot-
tom of the gradient zone.

Sun
Increasing salinity
O» and density
po = 1040 kg/m? v
\, Surface zone | _ /
I o/

Gradient zone

|l
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Ana:lysis We label thé top and the bottom of the vgradient Zone as lvand 2,
respectively. Noting that the density of the surface zone is constant, the gage
pressure at the bottom of the surface zone (which is the top of the gradient
zone) is
1 kN
1000 kg - m/s*
since 1 KN/m2 = 1 kPa. Since s = —2, the differential change in hydrostatic
pressure across a vertical distance of ds is given by
dP = pg ds

Integrating from the top of the gradient zone (point 1 where s = 0) to any
location s in the gradient zone (no subscript) gives

P, = pgh, = (1040 kg/m®)(9.81 m/s2)(0.8 m)( ) = 8.16 kPa

pt I / TS
P—P = JO pg ds - P=P+ ! po\l:‘ 1 + tanz(z E)g dz
Performing the integration gives the variation of gage pressure in the gradi-
ent zone to be

4H T S
P=P, + — 'h"(ta ——)
1 I’ogw s "4H

Then the pressure at the bottom of the gradient zone (s = H = 4 m)
becomes

- B 44 m) . T 4 1 kN
P, = 8.16 kPa + (1040 kg/m~)(9.81 m/s) sinh™'( tan —— 3
7y 1000 kg - m/s

= 54.0 kPa (gage)

Discussion The variation of gage pressure in the gradient zone with depth is
plotted in Fig. 3-17. The dashed line indicates the hydrostatic pressure for
the case of constant density at 1040 kg/m3 and is given for reference. Note
that the variation of pressure with depth is not linear when density varies
with depth. That is why integration was required.

s, m
7
I

P, kPa

The variation of gage
pressure with depth in the
gradient zone of the solar
pond.
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A flow section
or flow device

The Manometer

It is commonly used to measure small and Flud =7 T
moderate pressure differences. A manometer | :
contains one or more fluids such as mercury, water, e I(2)
alcohol, or oil. —L :
D Measuring the ' ff
atm - pressure drop across / ¥
Fluid 1 T a flow section or a flow pi ’i
h, device by a differential A B
l manometer. P2
—_ P, + pigla +h) — p,gh — piga = P,
uid 2 T
h, P, — P, = (p, — p1)gh
Fluid 3 f The basic
hs manometer. ¥

3
Patm + plghl + p2gh2 + p3gh3 — Pl

In stacked-up fluid layers, the
pressure change across a fluid layer

of density p and height h is pgh. P, = P,, + pgh

Gas




: EXAMPLE 3-5 Measuring Pressure with a Manometer

: A manometer is used to measure the pressure of a gas in a tank. The fluid
g Used has a specific gravity of 0.85, and the manometer column height is 55

= ¢m, as shown in Fig. 3-19. If the local atmospheric pressure is 96 kPa, Fam =96 kPa
m determine the absolute pressure within the tank. Y
14
SOLUTION The reading of a manometer attached to a tank and the P=2
atmospheric pressure are given. The absolute pressure in the tank is to be h =55 cm
determined.
Assumptions The density of the gas in the tank is much lower than the den-
sity of the manometer fluid.

Properties The specific gravity of the manometer fluid is given to be 0.85.
We take the standard density of water to be 1000 kg/m?.

Analysis The density of the fluid is obtained by multiplying its specific
gravity by the density of water,

p = SG (py,0) = (0.85)(1000 kg/m*) = 850 kg/m*
Then from Eq. 3-13,
P =P, + pgh

SG=0.85

— 06 kPa + (850 kg/m*)(9.81 m/s?)(0.55 m)( LN )( UKE )
‘ ' 1 kg - m/s*/ \ 1000 N/m’

= 100.6 kPa

Discussion Note that the gage pressure in the tank is 4.6 kPa.
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EXAMPLE 3-6 Measuring Pressure with a Multifluid Manometer :

The water in a tank is pressurized by air, and the pressure is measured by a :
multifluid manometer as shown in Fig. 3-22. The tank is located on a moun- 5
tain at an altitude of 1400 m where the atmospheric pressure is 85.6 kPa. m
Determine the air pressure in the tank if h, = 0.1 m, h, = 0.2 m, and h; = ®
0.35 m. Take the densities of water, oil, and mercury to be 1000 kg/m?, ™
850 kg/m3, and 13,600 kg/m?3, respectively.

SOLUTION The pressure in a pressurized water tank is measured by a multi-
fluid manometer. The air pressure in the tank is to be determined.

Mercury

21



Assumption The air pressure in the tank is uniform (i.e., its variation with
elevation is negligible due to its low density), and thus we can determine the
pressure at the air—water interface.

Properties The densities of water, oil, and mercury are given to be
1000 kg/m3, 850 kg/m?3, and 13,600 kg/m3, respectively.

Analysis Starting with the pressure at point 1 at the air—water interface,
moving along the tube by adding or subtracting the pgh terms until we reach
point 2, and setting the result equal to P,,, since the tube is open to the
atmosphere gives

Py + pyaec8y + poi8hy — Pmen:urygh3 ==
Solving for P, and substituting,
Py = Pon, — P81 — P8y + pmercurygh3
=t ar g(pmercuryh3 ~ Pwaert ~ Poit2)
= 85.6 kPa + (9.81 nv/s%)[(13,600 kg/m?)(0.35 m) — (1000 kg/m*)(0.1 m)

. 3 I N )( | kPa )
(850 kg/m?)(0.2 m)](l kg - mvs/ \1000 N/m”

= 130 kPa

Mercury



: EXAMPLE 3-7 Analyzing a Multifluid Manometer with EES

: Reconsider the multifluid manometer discussed in Example 3-6. Determine

= the air pressure in the tank using EES. Also determine what the differential

m fluid height h; would be for the same air pressure if the mercury in the last
column were replaced by seawater with a density of 1030 kg/m?3.

SOLUTION The pressure in a water tank is measured by a multifluid
manometer. The air pressure in the tank and the differential fluid height h,
If mercury Is replaced by seawater are to be determined using EES.

Analysis We start the EES program by double-clicking on its icon, open a
new file, and type the following on the blank screen that appears (we express
the atmospheric pressure in Pa for unit consistency):

g=9.81
Patm= 85600
h1=0.1; h2=0.2; h3=0.35
rw=1000; roil=850; rm=13600
P1+rw*g*hl+roil*g*h2—rm*g*h3=Patm
Here P1 is the only unknown, and it is determined by EES to be
P, = 129647 Pa = 130 kPa

which is identical to the result obtained in Example 3-6. The height of the
fluid column h; when mercury is replaced by seawater is determined easily by
replacing “h3=0.35" by “P1=129647" and “rm=13600" by “rm=1030,"
and clicking on the calculator symbol. It gives

hy = 4.62 m



Other Pressure Measurement Devices

Bourdon tube: Consists of a hollow metal tube \
bent like a hook whose end is closed and
connected to a dial indicator needle.
* Pressure transducers: Use various techniques
4_.-'

to convert the pressure effect to an electrical
effect such as a change in voltage, resistance, C-type
or capacitance.

*  Pressure transducers are smaller and faster,
and they can be more sensitive, reliable, and
precise than their mechanical counterparts.

« Strain-gage pressure transducers: Work by
having a diaphragm deflect between two
chambers open to the pressure inputs.

* Piezoelectric transducers: Also called solid-
state pressure transducers, work on the
principle that an electric potential is generated in
a crystalline substance when it is subjected to
mechanical pressure.

Various types of Bourdon tubes used t_‘

to measure pressure.




Deadweight tester: Another type of mechanical pressure gage. It is used
primarily for calibration and can measure extremely high pressures.

A deadweight tester measures pressure directly through application of a
weight that provides a force per unit area—the fundamental definition of
pressure.

It is constructed with an internal chamber filled with a fluid (usually oil),
along with a tight-fitting piston, cylinder, and plunger.

Weights are applied to the top of the piston, which exerts a force on the oll
in the chamber. The total force F acting on the oil at the piston—oil interface
is the sum of the weight of the piston plus the applied weights.

Weights
| | Oil
Piston reservoir
/ Adjusable A deadweight tester is
lF / plunger able to measure
A,

extremely high
'I_1 pressures (up to 10,000
== psi in some
Reference pressure port Crank applications). 25

Internal chamber




3-3 m INTRODUCTION TO FLUID STATICS

Fluid statics: Deals with problems associated with fluids at rest.
The fluid can be either gaseous or liquid.

Hydrostatics: When thye fluid is a liquid.

Aerostatics: When the fluid is a gas.

In fluid statics, there is no relative motion between adjacent fluid
layers, and thus there are no shear (tangential) stresses in the fluid
trying to deform it.

The only stress we deal with in fluid statics is the normal stress, which
is the pressure, and the variation of pressure is due only to the
weight of the fluid.

The topic of fluid statics has significance only in gravity fields.

The design of many engineering systems such as water dams and
liquid storage tanks requires the determination of the forces acting
on the surfaces using fluid statics.

26



3-4 m HYDROSTATIC
FORCES ON SUBMERGED
PLANE SURFACES

A plate, such as a gate valve in a dam,
the wall of a liquid storage tank, or the

hull of a ship at rest, is subjected to Hoover §&

fluid pressure distributed over its Dam.

surface when exposed to a liquid. -
On a plane surface, the hydrostatic / | \

forces form a system of parallel forces, e
and we often need to determine the faa= P
magnitude of the force and its point of
application, which is called the center
of pressure. h

When analyzing hydrostatic forceson _; /.
submerged surfaces, the atmospheric \ »
pressure can be subtracted for simplicity Fam * P o
when it acts on both sides of the structure. (@ Fun considered (0) Prygn sublracted




Pressure

/ distribution
\ \\‘_\‘

\
\\ \ \ 1

Hydrostatic force
on an inclined
plane surface
completely
submerged in a
liquid.

4
\
P= PO + ;)‘Qh \

\

Centroid
Center of pressure

Plane surface
of area A

Fr=(Py+ pgvesin )A = (Py + pghe)A = P A = P""&' A

P i
atm / Free surface

Pye=Fc=Pyn+rgh. The pressure at the |
centroid of a surface is
equivalent to the average
pressure on the surface. 28

Centroid
of surface



- Line of action

The resultant force acting on a
plane surface is equal to the
product of the pressure at the
centroid of the surface and the
surface area, and its line of
action passes through the Center of

center of pressure. PIESSUIE — Centroid
of area
]\_ X L
Vp=YVc T . .
- |yve + Py/(pg sin B)]A

I c " second moment of area

Yp=Yc T il o= | y dA (area moment of inertia)
= ‘A about the x-axis.

~
1.\1\'. 0 — [ o C + .\‘CA
29



bi2 R /
C (& R J G
b ' . < - <
X X
bi2 R k

—d

l— o —

N

al2 all
A=ab, I .=ab¥12 A=7R%L I, ~=wRY4 A=mab, 1, = wab¥/4
(a) Rectangle (b) Circle (c) Ellipse
_\' A
R E— y V4
2b/3 /\ |
- [ ? s | 7 b YIx
+ i 3w
al2 al
A=abl2, I ~=ab¥36 A=mRY2, 1 ~=0.109757R* A=mabl2, I, -=0.109757ab>
(d) Triangle (€) Semicircle (f) Semiellipse

The centroid and the centroidal moments of

inertia for some common geometries.
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Pressure acts normal to the surface, and
the hydrostatic forces acting on a flat
plate of any shape form a volume whose
base is the plate area and whose length
is the linearly varying pressure.

This virtual pressure prism has an
interesting physical interpretation: its
volume is equal to the magnitude of the
resultant hydrostatic force acting on the
plate since Fy = [ PdA, and the line of
action of this force passes through the
centroid of this homogeneous prism.

The projection of the centroid on the plate
is the pressure center.

Therefore, with the concept of pressure
prism, the problem of describing the
resultant hydrostatic force on a plane
surface reduces to finding the volume
and the two coordinates of the centroid of
this pressure prism.

Pressure prism

Surface
a

b

The hydrostatic forces acting on a
plane surface form a pressure prism
whose base (left face) is the surface
and whose length is the pressure.
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Rectangular Plate s

Special Case: 0 P,
Submerged < \<,

Hydrostatic force acting
on the top surface of a
submerged tilted

rectangular plate. \/
b ab’/12 A\
2

+ _
s + b/2 + Py /(pg sin 6)]ab

yp=98T

b b2 F =[Py + pg(s + b/2) sin Hlab
~ T2 T 12[s + b2 + Py /(pg sin 0)] ———
Tilted rectangular plate: Fr=P-A = [P, + pg(s + b/2) sin Blab
Tilted rectangular plate (s = 0): Frp =[P, + pg(b sin 8)/2]ab

32



Fp =[Py + pg(s +b/2)|ab

(b) Vertical plate

Vertical rectangular plate:

Vertical rectangular plate (s = 0):

Hydrostatic force
acting on the top
surface of a
submerged vertical
rectangular plate.

FR = [Py + pg(s + /?.-"‘2)](1/)
Fr = (P, + pgb/2)ab

33



Hydrostatic force acting
on the top surface of a
submerged horizontal
rectangular plate.

Fp=(P,+ pgh)ab

3

'!T‘TY'Y'!Y y ¥ ¥

Horizontal rectangular plate:

- a >

(c) Horizontal plate

Fr

= (P, + pgh)ab

34



EXAMPLE 3-8 Hydrostatic Force Acting on the Door
of a Submerged Car

A heavy car plunges into a lake during an accident and lands at the bottom
of the lake on its wheels (Fig. 3-33). The door is 1.2 m high and 1 m wide,
and the top edge of the door is 8 m below the free surface of the water.
Determine the hydrostatic force on the door and the location of the pressure
center, and discuss if the driver can open the door.

Properties We take the density of lake water to be 1000 kg/m? throughout.
Analysis The average (gage) pressure on the door is the pressure value at
the centroid (midpoint) of the door and is determined to be

Py = Pc = pghc = pg(s + b/2)

1 kKN
= (1000 ke/m>)(9.81 m/s*)(8 + 1.22 ( )
( g/m’)( SN L Ty —;

= 84.4 kN/m’
Then the resultant hydrostatic force on the door becomes
Fr = P, A = (844 kKN/m*)(1 m X 1.2 m) = 101.3 kN

The pressure center is directly under the midpoint of the door, and its dis-
tance from the surface of the lake is determined from Eq. 3-24 by setting
Py = 0O, yielding

= 8.6l m

b? 1.2 122
yp=8§t-+————=8+—+
2 12(s + b2) 2 128+ 1.27)

Lake
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Discussion A strong person can lift 100 kg, whose weight is 981 N or about
1 kN. Also, the person can apply the force at a point farthest from the
hinges (1 m farther) for maximum effect and generate a moment of 1 kN - m.
The resultant hydrostatic force acts under the midpoint of the door, and thus a
distance of 0.5 m from the hinges. This generates a moment of 50.6 kN - m,
which is about 50 times the moment the driver can possibly generate. There-
fore, it is impossible for the driver to open the door of the car. The driver’s
best bet is to let some water in (by rolling the window down a little, for
example) and to keep his or her head close to the ceiling. The driver should
be able to open the door shortly before the car is filled with water since at
that point the pressures on both sides of the door are nearly the same and
opening the door in water is almost as easy as opening it in air.

36



3-5 m HYDROSTATIC FORCES ON
SUBMERGED CURVED SURFACES

Liquid

Horizontal projection !r -
/ of the curved surface |‘(

| Vertical projection

Curved of the curved surface

surface

Free-body diagram
of the enclosed
liquid block

Fp= VF% + F2la = Fy/Fy

Determination of the hydrostatic force acting on a submerged curved surface.

Horizontal force component on curved surface: Fy = F,

Vertical force component on curved surface: F,=F,+ W a7



Curved
surface

"‘ﬂ

When a curved surface is above the liquid,
the weight of the liquid and the vertical
component of the hydrostatic force act in
the opposite directions.

Pressure

forces \

Resultant

force \

Circular /
surface ’

The hydrostatic force acting on a
circular surface always passes
through the center of the circle since
the pressure forces are normal to
the surface and they all pass

through the center. 38



in a multilayered fluid of different densities can be determined by
considering different parts of surfaces in different fluids as different
surfaces, finding the force on each part, and then adding them using

vector addition. For a plane surface, it can be expressed as

Fl\' = 2 F!\'.; = EP(.‘..-"_\J

Plane surface in a multilayered fluid.

Pc i = Py + pighc ;

The hydrostatic force on a
surface submerged in a
multilayered fluid can be
determined by considering parts
of the surface in different fluids
as different surfaces.

b,

b,

& & ‘

Oil

Water



: EXAMPLE 3-9 A Gravity-Controlled Cylindrical Gate

: A long solid cylinder of radius 0.8 m hinged at point A is used as an auto-
m matic gate, as shown in Fig. 3-38. When the water level reaches 5 m, the
® gate opens by turning about the hinge at point A. Determine (a) the hydro-
: static force acting on the cylinder and its line of action when the gate opens
= and (b) the weight of the cylinder per m length of the cylinder.

Properties We take the density of water to be 1000 kg/m? throughout.
Analysis (a) We consider the free-body diagram of the liquid block enclosed
by the circular surface of the cylinder and its vertical and horizontal projec-
tions. The hydrostatic forces acting on the vertical and horizontal plane sur-
faces as well as the weight of the liquid block are determined as

Horizontal force on vertical surface:

Fy=F.= P, A= pghcA= pg(s + RI2)A

avg

1 kN
= (1000 kg/m*)(9.81 nv/s%)(4.2 + 0.8/2 m)(0.8 m X 1 ( )
( g/me)( S m)0.8 m X Im)| =0 ———

= 36.1 kN
Vertical force on horizontal surface (upward):

F_\' = Pang = Pgh('A= pghbouomA

1 kN
= (1000 ke/m>)(9.81 m/s>)(5 m)(0.8 m X 1 ( )
( g/m)( @] b [T i

= 39.2kN
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Ik

Sm

Schematic for Example 3—9 and the free-body diagram of
the liquid underneath the cylinder.
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Weight of fluid block for one m width into the page (downward):
W = mg = pgV = pg(R* — wR*/4)(1 m)

(1000 kg/m~)(9.81 m/s")(0.8 m)“(1 — 7/4)(1 m)(IOOO kg - m/s?

= 1.3 kN
Therefore, the net upward vertical force is
Fy=F,— W=392—13=379kN

Then the magnitude and direction of the hydrostatic force acting on the
cylindrical surface become

Fr= VF4+ F} = \V36.1> + 37.92 = 52.3 kN
tan O = Fy/Fy = 37.9/36.1 = 1.05 — 6 = 46.4°

Therefore, the magnitude of the hydrostatic force acting on the cylinder is
52.3 kN per m length of the cylinder, and its line of action passes through
the center of the cylinder making an angle 46.4° with the horizontal.

(b) When the water level is 5 m high, the gate is about to open and thus the
reaction force at the bottom of the cylinder is zero. Then the forces other
than those at the hinge acting on the cylinder are its weight, acting through
the center, and the hydrostatic force exerted by water. Taking a moment
about point A at the location of the hinge and equating it to zero gives

FxRsin — Wy R =0 — W, = Fysinf = (52.3 kN) sin 46.4° = 37.9 kN

Discussion The weight of the cylinder per m length is determined to be
37.9 kN. It can be shown that this corresponds to a mass of 3863 kg per m
length and to a density of 1921 kg/m? for the material of the cylinder.
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3—-6 m BUOYANCY AND STABILITY

Buoyant force: The upward force a fluid exerts on a body immersed in it.
The buoyant force is caused by the increase of pressure with depth in a fluid.

\%

The buoyant force acting on

¢ presA the plate is equal to the
weight of the liquid

\ displaced by the plate.

For a fluid with constant
density, the buoyant force is
independent of the distance of

',
|
./

the body from the free surface.

Pr&(s + A It is also independent of the
density of the solid body.

A flat plate of uniform thickness h submerged
in a liquid parallel to the free surface.

Fg = Fooom — Frop = Pr&(s + WA — ps8SA = prghA = prgV
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Fluid

The buoyant forces acting on a
solid body submerged in a fluid and
on a fluid body of the same shape
at the same depth are identical.
The buoyant force Fg acts upward
through the centroid C of the
displaced volume and is equal in
magnitude to the weight W of the
displaced fluid, but is opposite in
direction. For a solid of uniform
density, its weight W also acts
through the centroid, but its
magnitude is not necessarily equal
to that of the fluid it displaces.
(Here W, > W and thus W, > Fg;
this solid body would sink.)

Archimedes’ principle: The buoyant force acting
on a body immersed in a fluid is equal to the weight
of the fluid displaced by the body, and it acts upward
through the centroid of the displaced volume.
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For floating bodies, the weight of the entire body must be equal to the
buoyant force, which is the weight of the fluid whose volume is equal to the
volume of the submerged portion of the floating body:

; ; V\l”" Pavg, body
Fp=W — pgVsp = P avg, bodyS Viotal — -

\’/It tal /’.’
Floating
P < Pf bOdy "
\/ Fluid

Suspended body
(neutrally buoyant)

A solid body dropped
into a fluid will sink,
float, or remain at rest
| Sinking  at any point in the
Py P =Ps | body fluid, depending on its
average density
relative to the density
of the fluid. 45




The altitude of a hot air
balloon is controlled by the
temperature difference
between the air inside and
outside the balloon, since
warm air is less dense than
cold air. When the balloon
is neither rising nor falling,
the upward buoyant force
exactly balances the
downward weight.
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EXAMPLE 3-10 Measuring Specific Gravity by a Hydrometer :

If you have a seawater aquarium, you have probably used a small cylindrical :
glass tube with a lead-weight at its bottom to measure the salinity of the m
water by simply watching how deep the tube sinks. Such a device that floats =
in a vertical position and is used to measure the specific gravity of a liquid
Is called a hydrometer (Fig. 3-43). The top part of the hydrometer extends
above the liquid surface, and the divisions on it allow one to read the spe-
cific gravity directly. The hydrometer is calibrated such that in pure water it
reads exactly 1.0 at the air—water interface. (a) Obtain a relation for the spe-
cific gravity of a liquid as a function of distance Az from the mark corre-
sponding to pure water and (b) determine the mass of lead that must be
poured into a 1-cm-diameter, 20-cm-long hydrometer if it is to float halfway
(the 10-cm mark) in pure water.

Properties We take the density of pure water to be 1000 kg/m?3.

Analysis (&) Noting that the hydrometer is in static equilibrium, the buoyant
force Fg exerted by the liquid must always be equal to the weight W of the
hydrometer. In pure water (subscript w), we let the vertical distance between
the bottom of the hydrometer and the free surface of water be z,. Setting
Fg w = Win this case gives

Whydm = FB. wo ngVsub = pngZO (1

where A is the cross-sectional area of the tube, and p,, is the density of pure
water.

/— Hydrometer
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In a fluid lighter than water (p; < p,,), the hydrometer will sink deeper, and
the liquid level will be a distance of Az above z,. Again setting Fz = W gives

Wiyao = Fpr = pr8Vsw = Pr8A(Zo + A2) (2)

This relation is also valid for fluids heavier than water by taking Az to be a
negative quantity. Setting Egs. (1) and (2) here equal to each other since
the weight of the hydrometer is constant and rearranging gives

Py 20

PugAZ= prgdastiaR) S = SG= =
w <0

which is the relation between the specific gravity of the fluid and Az. Note
that z, is constant for a given hydrometer and Az is negative for fluids heav-
ler than pure water.

(b) Disregarding the weight of the glass tube, the amount of lead that needs
to be added to the tube is determined from the requirement that the weight
of the lead be equal to the buoyant force. When the hydrometer is floating
with half of it submerged in water, the buoyant force acting on it is
FB — pwngub
Equating Fj to the weight of lead gives
W= mg = ngvsub
Solving for m and substituting, the mass of lead is determined to be
m = p Ve = po(TR*y) = (1000 kg/m*)[7(0.005 m)*(0.1 m)] = 0.00785 kg

Discussion Note that if the hydrometer were required to sink only 5 ¢m in
water, the required mass of lead would be one-half of this amount. Also, the
assumption that the weight of the glass tube is negligible is questionable
since the mass of lead is only 7.85 g.
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EXAMPLE 3-11 Weight Loss of an Object in Seawater

A crane is used to lower weights into the sea (density = 1025 kg/m?) for an
underwater construction project (Fig. 3-44). Determine the tension in the
rope of the crane due to a rectangular 0.4-m X 0.4-m X 3-m concrete block
(density = 2300 kg/m3®) when it is (&) suspended in the air and (b) com-
pletely immersed in water.

Properties The densities are given to be 1025 kg/m® for seawater and
2300 kg/m?3 for concrete.

Analysis (&) Consider a free-body diagram of the concrete block. The forces
acting on the concrete block in air are its weight and the upward pull action
(tension) by the rope. These two forces must balance each other, and thus
the tension in the rope must be equal to the weight of the block:

V = (0.4 m)(0.4 m)(3 m) = 0.48 m*

FT. air = Pconcretegv

i ) = 10.8 kN

= (2300 kg/m?)(9.81 m/s?)(0.48 m3(
( g/m’)( SN ) 1000 kg - nv/s?

(b) When the block is immersed in water, there is the additional force of
buoyancy acting upward. The force balance in this case gives

Fp= prgV=(1025 kg/m*)(9.81 m/s?)(0.48 m3)( ) = 4.8 kN

1000 kg + m/s*
FT.waler =W-— Fg = 10.8 — 4.8 = 6.0 kN

Discussion Note that the weight of the concrete block, and thus the tension
of the rope, decreases by (10.8 — 6.0)/10.8 = 55 percent in water.

Air

Concrete
block

l 4 /

E F WT. water
X :
Water
l i /
I
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Stability of Immersed and Floating Bodies

:

(a) Stable

O

(b) Neutrally stable

Stability is easily
understood by
analyzing a ball
For floating bodies such as on the floor. (¢) Unstable
ships, stability is an important
. : 50
consideration for safety.




A floating body possesses vertical stability, while an immersed
neutrally buoyant body is neutrally stable since it does not
return to its original position after a disturbance.

Weight
Fluid e';’(\
F F G
t B B W;
B GeB B
o i}
W B
Weight
(a) Stable (b) Neutrally stable (c) Unstable

An immersed neutrally buoyant body is (a) stable if the
center of gravity G is directly below the center of buoyancy
B of the body, (b) neutrally stable if G and B are
coincident, and (c) unstable if G is directly above B.
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Restoring moment

/O

Weight
A ball in a trough
When the center of gravity G of an immersed between two hills is
neutrally buoyant body is not vertically aligned stable for small
with the center of buoyancy B of the body, it is not disturbances, but
in an equilibrium state and would rotate to its unstable for large

stable state, even without any disturbance. disturbances.
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Metacenter ~

/ \

wje ]

Fp fB

|| V.|

[ Overturning

| [ o .
| ! g s / moment
’ | moment /

(a) Stable (b) Stable (c¢) Unstable

A floating body is stable if the body is bottom-heavy and thus the center of
gravity G is below the centroid B of the body, or if the metacenter M is above
point G. However, the body is unstable if point M is below point G.

Metacentric height GM: The distance between the center of gravity
G and the metacenter M—the intersection point of the lines of action
of the buoyant force through the body before and after rotation.

The length of the metacentric height GM above G is a measure of the
stability: the larger it is, the more stable is the floating body.
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3—-7 m FLUIDS IN RIGID-BODY MOTION

JdP d"
P+—— )dxdy
7 ’7 '

Pressure at a given point has the
same magnitude in all directions, and ‘
thus it is a scalar function. l 2 &

In this section we obtain relations for
the variation of pressure in fluids
moving like a solid body with or

) . . I . ' wy
without acceleration in the absence of pg dx dy dz: P(x, y, 2)

any shear stresses (i.e., no motion
between fluid layers relative to each
other).

SF=8m - a

om = p dV = p dx dy dz

) 0P dz P d” oP
ofs . = ~|dxdy — | P +——)dxdy = ———dxdydz

0z 2 07 2 Z

dZ

N doP ) doP
oF¢ . = ——dxdydz and oFs , = ——dxdydz
0x ' dy .



SFS = SFS,xi + SFS,yj + BFS,ZE
B _(6P-—_> P - 9P -

— i +—j +—k|dcdydz=—-VPdxdyd
ax ayJ az) dy dz dy dz

—z+@?+£72+ ;C)—— '.’_I_ '!_I_ ;C)
ox | Tyl T T esk=melad taytald

Accelerating fluids: Z—P =
X




Special Case 1: Fluids at Rest

For fluids at rest or moving on a straight path at constant velocity, all
components of acceleration are zero, and the relations reduce to

L/’ dP

JdP
— =0, =0, and —= —pg

0X (7)"\' d:

Fluids at rest:

The pressure remains constant in any horizontal direction (P is
independent of x and y) and varies only in the vertical direction as
a result of gravity [and thus P = P(z)]. These relations are
applicable for both compressible and incompressible fluids.
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Special Case 2: Free Fall of a Fluid Body

A freely falling body accelerates under the influence of gravity. When the air
resistance is negligible, the acceleration of the body equals the gravitational
acceleration, and acceleration in any horizontal direction is zero. Therefore,
a,=a,=0anda, =-g.

o . JdP JP JdP
Free-falling fluids: —=—=—=(0 — P = constant
ox dy 0Z
In a frame of reference moving with ‘"’I .
the fluid, it behaves like it is in an
environment with zero gravity. Also,
the gage pressure in a drop of liquid P P
in free fall is zero throughout. 4
h| Liquid. p h | Liquid, p
\ e o
l P:IPI ]P.Z:P]"l‘ngh
a,=-g a.=g

The effect of acceleration on the
pressure of a liquid during free  (4) Free fall of a (b) Upward acceleration
fall and upward acceleration. liquid of a liquid with a, = +g



Acceleration on a Straight Path

JdP JdP 0 l JdP (2 + a.)
—=—pa,, —=0, and — = — a.
dx Pl Jy 07 a ¢

P = P(x, 7). dP =(0P/ox) dx + (0P/9z7) dz

dP = —pa,dx — p(g + a,) dz

P2 - Pl = —pa‘(\z - \]) - p(g + U:)(:z - :])

Pressure variation: P = P, — pax — p(g +a.,)z

Free
surface

= |

A:ma.\:

‘l‘

0 Liquid

A
Y

b

Rigid-body motion of a liquid in a
linearly accelerating tank.
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g a. Lines of constant pressure
]_' f a " (which are the projections of the
x ------4 surfaces of constant pressure on
¥ the xz-plane) in a linearly
accelerating liquid. Also shown is

L the vertical rise.

Ko sy 0 - Free

/ surface

Ly = 452 T Al

Vertical rise of surface:

' a.
Az, =20 = 2Zq = ———7 (X2 — X)
g ta,
Constant
pressure
lines
= . o (/:- isobar dy
Surfaces of constant pressure: = ———— = constant
dx g+ta.
. § d Jisobar ay :
Slope of isobars: Slope = = ———= —tan#f
dx g +a,
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EXAMPLE 3-12 Overflow from a Water Tank During Acceleration :

An 80-cm-high fish tank of cross section 2 m X 0.6 m that is initially filled :
with water is to be transported on the back of a truck (Fig. 3-55). The truck m
accelerates from O to 90 km/h in 10 s. If it is desired that no water spills =
during acceleration, determine the allowable initial water height in the tank.
Would you recommend the tank to be aligned with the long or short side par-
allel to the direction of motion?

Analysis We take the x-axis to be the direction of motion, the z-axis to be
the upward vertical direction, and the origin to be the lower left corner of the

tank. Noting that the truck goes from O to 90 km/h in 10 s, the acceleration
of the truck is

AV (90 — 0) km/h( 1 m/s
At 10s  \3.6km/h

ay

) = 2.5 m/s?

The tangent of the angle the free surface makes with the horizontal is

a, 3
g+a, 981+0

tan = = (0.255 (and thus # = 14.3°) N

Water
tank

80 cm

b




The maximum vertical rise of the free surface occurs at the back of the tank,
and the vertical midplane experiences no rise or drop during acceleration
since it is a plane of symmetry. Then the vertical rise at the back of the tank
relative to the midplane for the two possible orientations becomes

Case 1: The long side is parallel to the direction of motion:
Az, = (by/2)tan 8 = [(2 m)/2] X 0.255 = 0.255 m = 25.5 cm

Case 2: The short side is parallel to the direction of motion:
Az, = (by/2) tan # = [(0.6 m)/2] X 0.255 = 0.076 m = 7.6 cm

Therefore, assuming tipping is not a problem, the tank should definitely be
oriented such that its short side is parallel to the direction of motion. Emptying
the tank such that its free surface level drops just 7.6 cm in this case will
be adequate to avoid spilling during acceleration.

Discussion Note that the orientation of the tank is important in controlling
the vertical rise. Also, the analysis is valid for any fluid with constant den-

sity, not just water, since we used no information that pertains to water in
the solution.
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Rotation in a Cylindrical Container

Consider a vertical cylindrical container partially
filled with a liquid. The container is now rotated
about its axis at a constant angular velocity of w.
After initial transients, the liquid will move as a
rigid body together with the container. There is
no deformation, and thus there can be no shear
stress, and every fluid particle in the container
moves with the same angular velocity.

P ; oP 0 l dP
— = pro-, — = (), anc — = —pg
or L, 0Z F

P = P(r, z) dP = (dPldr)dr + (0P/3z)dz

dP = pro* dr — pg dz

/7 .
Ulisobar rw
dr g
i , _ w- _'
Surfaces of constant pressure:  Zigp = 71~ + C

Axis of
rotation

bk

I
Free
T — \\
“ &{_r R S—.. —--“_/_/_
! B __i
zs I hC
h, ,
- |
~ A
\i Y Y
r
I —
5

Rigid-body motion of a
liquid in a rotating vertical

cylindrical container. 6
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s 2
Free surface: z, = h, — " (R* — 2r?)




' S
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The 6-meter spinning liquid-
mercury mirror of the Large
Zenith Telescope located near
Vancouver, British Columbia.

[
Free 1
su:jl'ucc ' l
\ { A:‘\._ my P 1
T R W P'w
. 4. /T// .
. g
\ -__T_,_ -}/ b,
\\—_._}'_.ﬂﬂ/ o,
\_‘__ i "// PD
— e
\“ ___,i,__f / P:
\-‘ii;.,--f /

Surfaces of constant
pressure in a rotating
liquid.
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Maximum height difference: AZ; pax = Zs(R) — 7,(0) =

p)

. 9 ) 7 pw- . 4
dP = pro*dr — pg dz. P,— P, = —(r; = ry) — pg(z, — 2y)
’ " /)H_)‘j
Pressure variation: P = P, + r* — pgz

Note that at a fixed radius, the pressure varies hydrostatically in the
vertical direction, as in a fluid at rest.

For a fixed vertical distance z, the pressure varies with the square of the
radial distance r, increasing from the centerline toward the outer edge.

In any horizontal plane, the pressure difference between the center and
edge of the container of radius R is

AP = pw’R?*/2
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EXAMPLE 3-13 Rising of a Liquid During Rotation

A 20-cm-diameter, 60-cm-high vertical cylindrical container, shown in Fig.
3-59, is partially filled with 50-cm-high liquid whose density is 850 kg/m?.
Now the cylinder is rotated at a constant speed. Determine the rotational
speed at which the liquid will start spilling from the edges of the container.

Analysis Taking the center of the bottom surface of the rotating vertical
cylinder as the origin (r = 0, z = 0), the equation for the free surface of the
liquid is given as

2
(&)
Z, = hg— — (R — 21
s Io 48( I‘)

Then the vertical height of the liquid at the edge of the container where r =
R becomes

2p2
um=m+zR

where h, = 0.5 m is the original height of the liquid before rotation. Just
before the liquid starts spilling, the height of the liquid at the edge of the con-
tainer equals the height of the container, and thus z, (R) = H = 0.6 m. Solv-
ing the last equation for @ and substituting, the maximum rotational speed
of the container is determined to be

_ [4glH — hol _ [4(9.81 m/s?)[(0.6 — 0.5) m]
*=VT r \ (0.1 m)?

= 19.8 rad/s

|
[ (2]
ap.

Free
surface

hg
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Noting that one complete revolution corresponds to 27 rad, the rotational
speed of the container can also be expressed in terms of revolutions per
minute (rpm) as

© 19.8 rad/s{ 60 s
2w 2w rad/rev\] min

n= ) = 189 rpm

Therefore, the rotational speed of this container should be limited to 189
rpm to avoid any spill of liquid as a result of the centrifugal effect.
Discussion Note that the analysis is valid for any liquid since the result is
independent of density or any other fluid property. We should also verify that
our assumption of no dry spots is valid. The liquid height at the center is

2R
w
ZI(O) = hO - 4

=04m

Since z,(0) is positive, our assumption is validated.
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