
Chapter 2: Properties of Fluids

Introduction

- Any characteristic of a system is called a property.
 - Familiar: pressure P, temperature T, volume V, and mass m.
 - Less familiar: viscosity, thermal conductivity, modulus of elasticity, thermal expansion coefficient, vapor pressure, surface tension.
- *Intensive* properties are independent of the mass of the system. Examples: temperature, pressure, and density.
- Extensive properties are those whose value depends on the size of the system. Examples: Total mass, total volume, and total momentum.
- Extensive properties per unit mass are called **specific properties**. Examples include specific volume v = V/m and specific total energy e=E/m.

Continuum

- Atoms are widely spaced in the gas phase.
- However, we can disregard the atomic nature of a substance.
- View it as a continuous, homogeneous matter with no holes, that is, a continuum.
- This allows us to treat properties as smoothly varying quantities.
- Continuum is valid as long as size of the system is large in comparison to distance between molecules.

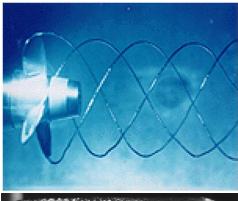
Density and Specific Gravity

- Density is defined as the mass per unit volume $\rho = m/V$. Density has units of kg/m³
- Specific volume is defined as $v = 1/\rho = V/m$.
- For a gas, density depends on temperature and pressure.
- **Specific gravity**, or relative density is defined as the ratio of the density of a substance to the density of some standard substance at a specified temperature (usually water at 4°C), i.e., $SG = \rho/\rho_{H_2O}$. SG is a dimensionless quantity.
- The **specific weight** is defined as the weight per unit volume, i.e., $\gamma_s = \rho_g$ where g is the gravitational acceleration. γ_s has units of N/m³.

Density and Specific Gravity

Specific gravities of some substances at 0°C

Substance	SG
Water	1.0
Blood	1.05
Seawater	1.025
Gasoline	0.7
Ethyl alcohol	0.79
Mercury	13.6
Wood	0.3-0.9
Gold	19.2
Bones	1.7-2.0
Ice	0.92
Air (at 1 atm)	0.0013


Density of Ideal Gases

- **Equation of State**: equation for the relationship between pressure, temperature, and density.
- The simplest and best-known equation of state is the ideal-gas equation.

$$P = \rho RT$$

- Ideal-gas equation holds for most gases.
- However, dense gases such as water vapor and refrigerant vapor should not be treated as ideal gases. Tables should be consulted for their properties, e.g., Tables A-3E through A-6E in textbook.

Vapor Pressure and Cavitation

- Vapor Pressure P_v is defined as the pressure exerted by its vapor in phase equilibrium with its liquid at a given temperature
- If P drops below P_{ν} , liquid is locally vaporized, creating cavities of vapor.
- Vapor cavities collapse when local P rises above P_v .
- Collapse of cavities is a violent process which can damage machinery.
- Cavitation is noisy, and can cause structural vibrations.

Vapor Pressure

Saturation (or vapor) pressure of water at various temperatures

Temperature <i>T</i> , °C	Saturation Pressure P _{sat} , kPa
-10	0.260
-5	0.403
0	0.611
5	0.872
10	1.23
15	1.71
20	2.34
25	3.17
30	4.25
40	7.38
50	12.35
100	101.3 (1 atm)
150	475.8
200	1554
250	3973
300	8581

9

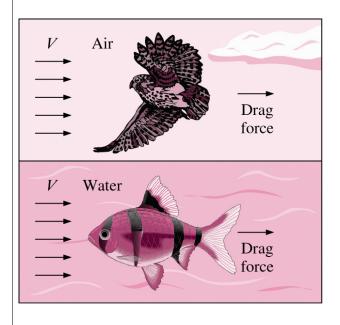
Energy and Specific Heats

- Total energy *E* is comprised of numerous forms: thermal, mechanical, kinetic, potential, electrical, magnetic, chemical, and nuclear.
- Units of energy are joule (J) or British thermal unit (BTU).
- Microscopic energy
 - Internal energy u is for a non-flowing fluid and is due to molecular activity.
 - Enthalpy h=u+Pv is for a flowing fluid and includes flow energy (Pv).
- Macroscopic energy
 - Kinetic energy $ke=V^2/2$
 - Potential energy *pe=gz*
- In the absence of electrical, magnetic, chemical, and nuclear energy, the total energy is $e_{flowing} = h + V^2/2 + gz$

Coefficient of Compressibility

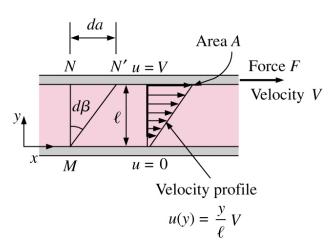
- How does fluid volume change with P and T?
- Fluids expand as $T \uparrow \text{ or } P \downarrow$
- Fluids contract as $T \downarrow \text{ or } P \uparrow$
- Need fluid properties that relate volume changes to changes in P and T.
 - Coefficient of compressibility

$$\kappa = -\nu \left(\frac{\partial P}{\partial \nu}\right)_T = \rho \left(\frac{\partial P}{\partial \rho}\right)_T \qquad \alpha = \frac{1}{\kappa} = -\frac{1}{\nu} \left(\frac{\partial \nu}{\partial P}\right)_T = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial P}\right)_T \quad \text{isothermal compressibility}$$

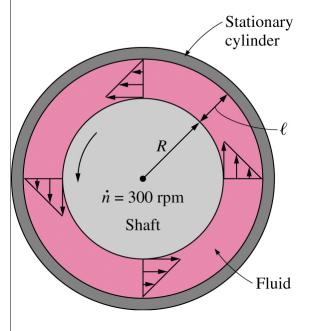

Coefficient of volume expansion

$$\beta = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_{P} = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_{P}$$

• Combined effects of *P* and *T* can be written as


$$dv = \left(\frac{\partial v}{\partial T}\right)_P dT + \left(\frac{\partial v}{\partial P}\right)_T dP$$

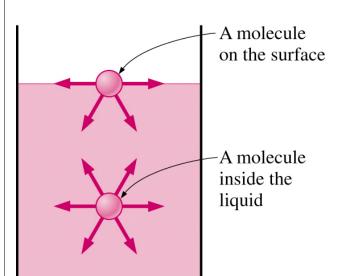
Viscosity


- **Viscosity** is a property that represents the internal resistance of a fluid to motion.
- The force a flowing fluid exerts on a body in the flow direction is called the **drag** force, and the magnitude of this force depends, in part, on viscosity.

Viscosity

- To obtain a relation for viscosity, consider a fluid layer between two very large parallel plates separated by a distance ℓ
- Definition of shear stress is $\tau = F/A$.
- Using the no-slip condition, u(0) = 0 and $u(\ell) = V$, the velocity profile and gradient are $u(y) = Vy/\ell$ and $du/dy = V/\ell$
- Shear stress for Newtonian fluid: $\tau = \mu du/dy$
- μ is the **dynamic viscosity** and has units of $kq/m \cdot s$, $Pa \cdot s$, or **poise**.

Viscometry

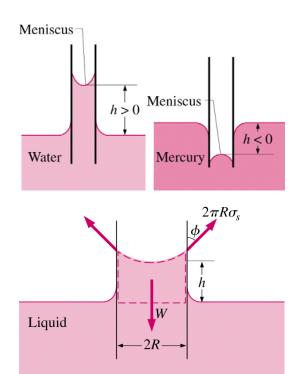

- How is viscosity measured? A rotating viscometer.
 - Two concentric cylinders with a fluid in the small gap ℓ .
 - Inner cylinder is rotating, outer one is fixed.
- Use definition of shear force:
- If $\ell/R << 1$, then cylinders can be modeled as flat plates.
- Torque T = FR, and tangential velocity $V = \omega R$
- Wetted surface area $A=2\pi RL$.
- Measure T and ω to compute μ

Viscometry

Dynamic viscosities of some fluids at 1 atm and 20°C (unless otherwise stated)

	Dynamic Viscosity
Fluid	μ, kg/m⋅s
Glycerin:	
-20°C	134.0
0°C	10.5
20°C	1.52
40°C	0.31
Engine oil:	
SAE 10W	0.10
SAE 10W30	0.17
SAE 30	0.29
SAE 50	0.86
Mercury	0.0015
Ethyl alcohol	0.0012
Water:	
0°C	0.0018
20°C	0.0010
100°C (liquid)	0.00028
100°C (vapor)	0.000012
Blood, 37°C	0.00040
Gasoline	0.00029
Ammonia	0.00015
Air	0.000018
Hydrogen, 0°C	0.0000088

Surface Tension


- Liquid droplets behave like small spherical balloons filled with liquid, and the surface of the liquid acts like a stretched elastic membrane under tension.
- The pulling force that causes this is
 - due to the attractive forces between molecules
 - called **surface tension** σ_s .
- Attractive force on surface molecule is not symmetric.
- Repulsive forces from interior molecules causes the liquid to minimize its surface area and attain a spherical shape.

Surface Tension

Surface tension of some fluids in air at 1 atm and 20°C (unless otherwise stated)

Surface Tension
σ_s , N/m*
0.076
0.073
0.059
0.014
0.063
0.035
0.440
0.023
0.058
0.022
0.021
0.025
0.028

Capillary Effect

- Capillary effect is the rise or fall of a liquid in a small-diameter tube.
- The curved free surface in the tube is called the **meniscus**.
- Water meniscus curves up because water is a *wetting fluid*.
- Mercury meniscus curves down because mercury is a nonwetting fluid.
- Force balance can describe magnitude of capillary rise.

Homework

4c,5,7,9E,11c-13c,16,21c-24c,27c,28c,30-35,37,38c-40c,**43-51**, **53**,55c,57c,58c,**60e**